Procedures for the calibration and use of plane-parallel ionization chambers in high-energy electron and photon beams have been given in the international code of practice IAEA TRS-381. In the present work, plane-parallel ionization chambers of the type PTW-34001 Roos and Scanditronix NACP02 have been calibrated using two N(K)-based procedures. For the NACP chamber the difference between the N(D,air) chamber factors determined in an electron beam and in a 60Co gamma-ray beam, respectively, is of the same magnitude as the experimental uncertainty. Results for the PTW Roos chambers, however, do not agree, in accordance with recent findings of other authors. The value determined in a 60Co gamma-ray beam is questioned and the reason for the discrepancy assigned to the correction factor for the perturbation due to the chamber wall, p(wall). New values of p(wall) have been experimentally determined by comparing absorbed dose measurements based on air-kerma and absorbed dose to water calibration procedures. A new p(wall) factor for the Roos chamber in 60Co gamma-ray beams in water (1.009+/-0.6%) was derived as the weighted average of the different determinations. The value is not significantly higher than the p(wall) factor given in TRS-381 (1.003+/-1.5%), but the combined standard uncertainty is reduced. The chamber to chamber variation for six commercial PTW Roos chambers and a Roos prototype was found to be very small.
The energy dependence of radiographic film can introduce dosimetric errors when evaluating photon beams. The variation of the film response, which is attributed to the changing photon spectrum with depth and field size, has been the subject of numerous publications in recent years. However, these data show large unexplained differences in the magnitude of this variation among independent studies. To try to resolve this inconsistency, this study assesses the dependence of radiographic film response on phantom material and phantom size using film measurements and Monte Carlo calculations. The relative dose measured with film exposed to 6 MV x rays in various phantoms (polystyrene, acrylic, Solid Water, and water; the lateral phantom dimensions vary from 25 to 50 cm square; backscatter thickness varies from 10 to 30 cm) is compared with ion chamber measurements in water. Ranges of field size (5 x 5 to 40 x 40 cm2) and depth (dmax to 20 cm) are studied. For similar phantom and beam configurations, Monte Carlo techniques generate photon fluence spectra from which the relative film response is known from an earlier study. Results from film response measurements agree with those derived from Monte Carlo calculations within 3%. For small fields (< or = 10 x 10 cm2) and shallow depths (< or = 10 cm) the film response variation is small, less than 4%, for all phantoms. However, for larger field sizes and depths, the phantom material and phantom size have a greater influence on the magnitude of the film response. The variation of film response, over the ranges of field sizes and depths studied, is 50% in polystyrene compared with 30% in water. Film responses in Solid Water and water phantoms are similar; acrylic is between water and polystyrene. In polystyrene the variation of film response for a 50 cm square phantom is nearly twice that observed in a 25 cm square phantom. This study shows that differences in the configuration of the phantoms used for film dosimetry can explain much of the inconsistency for film response reported in the literature.
According to published data, the absorbed dose used for a CBCT image acquisition with Varian OBI v1.3 can be as high as 100 mGy. In 2008 Varian released a new OBI version (v1.4), which promised to reduce the imaging dose. In this study, absorbed doses used for CBCT image acquisitions with the default irradiation techniques of Varian OBI v1.3 and v1.4 are measured.TLDs are used to derive dose distributions at three planes inside an anthropomorphic phantom. In addition, point doses and dose profiles inside a ‘stack’ of three CTDI body phantoms are measured using a new solid state detector, the CT Dose Profiler. With the CT Dose Profiler, the individual pulses from the X‐ray tube are also studied. To verify the absorbed dose measured with the CT Dose Profiler, it is compared to TLD. The image quality is evaluated using a Catphan phantom.For OBI v1.3, doses measured in transverse planes of the Alderson phantom range between 64 mGy and 144 mGy. The average dose is around 100 mGy. For OBI v1.4, doses measured in transverse planes of the Alderson phantom range between 1 mGy and 51 mGy. Mean doses range between 3‐35 mGy depending on CBCT mode. CT Dose Profiler data agree with TLD measurements in a CTDI phantom within the uncertainty of the TLD measurements (estimated SD ±10%). Instantaneous dose rate at the periphery of the phantom can be higher than 20 mGy/s, which is 10 times the dose rate at the center. The spatial resolution in v1.4 is not as high as in v1.3.In conclusion, measurements show that the imaging doses for default modes in Varian OBI v1.4 CBCT system are significantly lower than in v1.3. The CT Dose Profiler is proven fast and accurate for CBCT applications.PACS number: 87.53.Bn
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.