Autism is a disorder of neurobiological origin that originates a different course in the development of verbal and nonverbal communication, social interactions, the flexibility of behavior, and interests. The results obtained offer relevant information to reflect on the practices currently used in assessing the development of children and the detection of ASD and suggest the need to strengthen the training of health professionals in aspects such as psychology and developmental disorders. This study, based on genuine and current facts, used data from 292 children with an autism spectrum disorder. The input dataset has 20 characteristics, and the output dataset has one attribute. The output property indicates whether or not a certain person has autism. The research study first and foremost performed data pretreatment activities such as filling in missing data gaps in the data collection, digitizing categorical data, and normalizing. The features were then clustered using k -means and x -means clustering methods, then artificial neural networks and a linguistic strong neurofuzzy classifier were used to classify them. The outcomes of each strategy were examined, and their respective performances were compared.
Colon cancer is a disease characterized by the unusual and uncontrolled development of cells that are found in the large intestine. If the tumour extends to the lower part of the colon (rectum), the cancer may be colorectal. Medical imaging is the denomination of methods used to create visual representations of the human body for clinical analysis, such as diagnosing, monitoring, and treating medical conditions. In this research, a computational proposal is presented to aid the diagnosis of colon cancer, which consists of using hyperspectral images obtained from slides with biopsy samples of colon tissue in paraffin, characterizing pixels so that, afterwards, imaging techniques can be applied. Using computer graphics augmenting conventional histological deep learning architecture, it can classify pixels in hyperspectral images as cancerous, inflammatory, or healthy. It is possible to find connections between histochemical characteristics and the absorbance of tissue under various conditions using infrared photons at various frequencies in hyperspectral imaging (HSI). Deep learning techniques were used to construct and implement a predictor to detect anomalies, as well as to develop a computer interface to assist pathologists in the diagnosis of colon cancer. An infrared absorbance spectrum of each of the pixels used in the developed classifier resulted in an accuracy level of 94% for these three classes.
In this study, the authors hope to demonstrate that when mammography is combined with intelligent segmentation techniques, it can become more effective in diagnosing breast abnormalities and aiding in the early detection of breast cancer. In conjunction with intelligent segmentation techniques, mammography can be made more effective in diagnosing breast abnormalities and aiding in the early diagnosis of breast cancer, hence increasing its overall effectiveness. The methodology, which includes some concepts of digital imaging and machine learning techniques, will be described in the following section after a review of the literature on breast cancer (categories, prevention involving the environment and lifestyle, diagnosis, and tracking of the disease) has been completed (neural networks and random forests). It was possible to achieve these results by working with an image collection that previously had questionable regions (per the given technique). Fiji software extracted problematic candidate regions from mammography images, which were subsequently subjected to further examination. To categorize the results of the picture segmentation, they were sorted into three groups, which were as follows: random forest and neural networks both generated promising results in the segmentation of suspicious parts that were emphasized in the highlight of the image, and this was true for both algorithms. Detection of contours of the regions was carried out, indicating that cuts of these segmented sections may be created. Later on, automatic categorization of the targets can be carried out using a learning algorithm, as illustrated in the experiment.
This paper presents the research results on the contribution of user-centered data mining based on the standard principles, focusing on the analysis of survival and mortality of lung cancer cases. Researchers used anonymized data from previously diagnosed instances in the health database to predict the condition of new patients who have not had their results yet. Medical professionals specializing in this field provided feedback on the usefulness of the new software, which was constructed using WEKA data mining tools and the Naive Bayes method. The results of this article provide elements of interest to discuss the value of identifying or discovering relationships in apparently “hidden” information to propose strategies to counteract health problems or prevent future complications and thus contribute to improving the quality of care. Life of the population, as would be the case of data mining in the health area, has shown applicability in the early detection and prevention of diseases for the analysis of genetic markers to determine the probability of a satisfactory response to medical treatment, and the most accurate model was Naive Bayes (91.1%). The Naive Bayes algorithm’s closest competitor, bagging, came in second with 90.8%. The analysis found that the ZeroR algorithm had the lowest success rate at 80%.
Nanostructure such as quaternary alloy offers an unprecedented opportunity for alloy composition control in a wide range, unavailable with traditional epitaxial film materials. The technique of chemical co-precipitation has been employed to synthesize the NiZnFe 2 O 3 quaternary alloy nanostructure, which is cost-effective and friendly environmentally. The study of morphology for the mentioned NiZnFe 2 O 3 quaternary alloy nanostructure is elaborated by scanning electron microscopy (SEM) to measure the grain size. The optical properties are investigated via UV-visible spectrophotometry (UV-vis) and Fourier-transform infrared spectroscopy (FTIR) to research the absorption, transmission, reflection and bandgap for the mentioned NiZnFe 2 O 3 quaternary alloy nanostructure, also, for verifying optical dielectric constant and refractive index models using specific empirical models. The grains size and energy gap are investigated to recommend the suitability results for NiZnFe 2 O 3 quaternary alloy nanostructure. Finally, Ravindra et al. models are an appropriate for potential application in optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.