An UCST-type copolymer of acrylamide (AAm) and acrylonitrile (AN) (poly(AAm-co-AN)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization and its temperature-induced phase transition and aggregation behaviour studied by turbidimetry, static and dynamic light scattering, small angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM) measurements. The phase transition temperature was found to increase with increasing AN content in the copolymer, concentration of the solutions and copolymer chain length. A significant effect was observed onto the phase transition temperature by addition of different electrolytes into the copolymer solution. The copolymer chains were aggregated below the phase transition temperature and disaggregated above it. The size of the aggregates increases with increasing AN contents and concentration of the copolymer solutions below the phase transition temperature. The copolymer chains were expanded and weekly associated in solution above the phase transition temperature. A model is proposed to explain such association-aggregation behaviour of poly(AAm-co-AN) copolymers depending on AN contents and concentration of the copolymer solutions as a function of temperature.
The molecular dynamics of linear poly(N-isopropylacrylamide) (pNIPAM) in aqueous media at temperatures below and above the lower critical solution temperature (LCST) are investigated using broadband dielectric relaxation spectroscopy in a frequency range from 10(-1) to 10(11) Hz. Below the LCST, two relaxation processes are observed in the megahertz and gigahertz region assigned to the reorientation of dipoles of the solvated polymer segments (p-process) and water molecules (w-process), respectively. Both relaxation processes are analyzed using the Havriliak-Negami (HN) function, taking special attention to the w-process. Above the LCST, the dielectric spectra of the pNIPAM solutions resemble that of pure water, showing only the high frequency relaxation process of the water molecules with a more or less Debye-type behavior. The non-Debye behavior of the w-process below the LCST is mainly induced by the interactions between water and pNIPAM chains via hydrogen bonding. The relaxation time and strength of the w-process is studied with dependence on the concentration, temperature, and the polymer chain length (molecular weight). The information obtained is useful for a deeper understanding of the dehydration behavior at the phase transition. The suggestion of dehydration of the pNIPAM chains at the LCST is confirmed by calculating a dehydration number.
Two thermoresponsive polyacrylamides based on the 2,6-diaminopyridine motif were synthesized and their UCST-type reversible thermoresponsive behaviour was studied in water/alcohol mixtures.
Combining experiments and all-atom molecular dynamics simulations, we study the conformational behavior of polyacrylamide (PAM) in aqueous alcohol mixtures over a wide range of temperatures. This study shows that even when the microscopic interaction is dictated by hydrogen bonding, unlike its counterparts that present a lower critical solution temperature (LCST), PAM shows a counterintuitive tunable upper critical solution temperature (UCST)-type phase transition in water/alcohol mixtures that was not reported before. The phase transition temperature was found to be tunable between 4 and 60 °C by the type and concentration of alcohol in the mixture as well as by the solution concentration and molecular weight of the polymer. In addition, molecular dynamics simulations confirmed a UCST-like behaviour of the PAM in aqueous alcoholic solutions. Additionally, it was observed that the PAM is more swollen in pure alcohol solutions than in 80% alcoholic solutions due to θ-like behaviour. Additionally, in the globular state, the size of the aggregates was found to increase with increasing solvent hydrophobicity and polymer concentration of the solutions. Above its phase transition temperature, PAM might be present as individual polymer chains in the coil state (≤10 nm). As PAM is a widespread polymer in many biomedical applications (gel electrophoresis, etc.), this finding could be of high relevance for many more practical applications in high performance pharmaceuticals and/or sensors.
A copolymer consisting of acrylamide (AAm) and acrylonitrile (AN) in aqueous solution was investigated using broadband dielectric spectroscopy at frequencies between 10 Hz and 10 Hz in the temperature range from 2 °C to 60 °C. This system shows an UCST phase behavior. The phase transition and aggregation behavior is monitored by both the temperature and frequency dependence of the complex conductivity σ*(f, T), where the AN fraction and the concentration of the solution were varied. Additionally, the dielectric data are compared with the results obtained from dynamic light scattering measurements. The temperature dependence of the DC conductivity (σ) of the copolymer solution is monitored and the phase transition temperature (PTT) of the poly(AAm-co-AN) copolymer is deduced from a change in the T-dependence of the DC conductivity. The change in σ can be explained by decreased effective charge carrier mobility and a reduction of the effective charge number density at temperatures below the phase transition temperature of the poly(AAm-co-AN) solution. A pronounced interfacial polarization effect on the frequency dependence of the real part of the conductivity (σ') is observed at temperatures below the phase transition temperature. The charge carriers are blocked at the formed aggregates giving rise to this interfacial polarization. The dependence of the interfacial polarization on the acrylonitrile fraction in the copolymer and the concentration of the solution is studied in detail and conclusions concerning the internal structures of the copolymer aggregates are drawn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.