In this paper, we proposed a novel analytical technique for one-dimensional fractional heat equations with time fractional derivatives subjected to the appropriate initial condition. This new analytical technique, namely multistep reduced differential transformation method (MRDTM), is a simple amendment of the reduced differential transformation method, in which it is treated as an algorithm in a sequence of small intervals, in order to hold out accurate approximate solutions over a longer time frame compared to the traditional RDTM. The fractional derivatives are described in the Caputo sense, while the behavior of solutions for different values of fractional order [Formula: see text] compared with exact solutions is shown graphically. The analysis is accompanied by four test examples to demonstrate that the proposed approach is reliable, fully compatible with the complexity of these equations, and can be strongly employed for many other nonlinear problems in fractional calculus.
The multistep generalized differential transform method is applied to solve the fractional-order multiple chaotic FitzHugh-Nagumo (FHN) neurons model. The algorithm is illustrated by studying the dynamics of three coupled chaotic FHN neurons equations with different gap junctions under external electrical stimulation. The fractional derivatives are described in the Caputo sense. Furthermore, we present figurative comparisons between the proposed scheme and the classical fourth-order Runge-Kutta method to demonstrate the accuracy and applicability of this method. The graphical results reveal that only few terms are required to deduce the approximate solutions which are found to be accurate and efficient.
A new reliable algorithm based on an adaptation of the standard generalized differential transform method (GDTM) is presented. The GDTM is treated as an algorithm in a sequence of intervals (i.e., time step) for finding accurate approximate solutions of fractional-order Rössler chaotic and hyperchaotic systems. A comparative study between the new algorithm and the classical Runge-Kutta method is presented in the case of integer-order derivatives. The algorithm described in this paper is expected to be further employed to solve similar nonlinear problems in fractional calculus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.