January 29, 2003; 10.1152/ajpcell.00508.2002Signaling mechanisms for stretch-dependent growth and differentiation of vascular smooth muscle were investigated in mechanically loaded rat portal veins in organ culture. Stretch-dependent protein synthesis was found to depend on endogenous release of angiotensin II. Autoradiography after [ 35 S]methionine incorporation revealed stretch-dependent synthesis of several proteins, of which SM22 and actin were particularly prominent. Inhibition of RhoA activity by cellpermeant C3 toxin increased tissue mechanical compliance and reduced stretch-dependent extracellular signal-regulated kinase (ERK)1/2 activation, growth, and synthesis of actin and SM22, suggesting a role of the actin cytoskeleton. In contrast, inhibition of Rho-associated kinase by Y-27632 did not reduce ERK1/2 phosphorylation or actin and SM22 synthesis and did not affect tissue mechanical compliance but still inhibited overall growth. The actin polymerization inhibitors latrunculin B and cytochalasin D both inhibited growth and caused increased tissue compliance. Whereas latrunculin B concentration-dependently reduced actin and SM22 synthesis, cytochalasin D did so at low (10 Ϫ8 M) but not at high (10 Ϫ6 M) concentration. The results show that stretch stabilizes the contractile smooth muscle phenotype. Stretch-dependent differentiation marker expression requires an intact cytoskeleton for stretch sensing, control of protein expression via the level of unpolymerized G-actin, or both.SM22; cytoskeleton; rat portal vein; RhoA; hypertension THE MECHANICAL STRESS IMPOSED on the vascular wall by the intraluminal blood pressure is critical for regulating its growth and phenotypic differentiation, as shown by a massive body of experimental and clinical evidence. The contractile phenotype of the smooth muscle cells in the vessel media, characterized by contractile ability and little tendency to proliferation, is marked by the expression of several smooth muscle-specific proteins, including among others SM22, calponin, hcaldesmon, ␣-actin, and smooth muscle myosin heavy chain (27). These are decreased in cell culture and in cells reacting to injury and inflammatory mediators in the early atherosclerotic process (28). Understanding of the mechanisms maintaining cellular differentiation and of the influence on them by mechanical stress may thus clarify processes involved not only in hypertension but also in the development of atherosclerotic lesions, as well as suggest new approaches for preventing vascular disease.Veins are exposed to lower intraluminal pressure than arteries but show considerable pressure-induced growth, as demonstrated by the hypertrophy, and often rapidly progressing atherosclerosis, of venous grafts exposed to arterial pressure (30). One vessel that has been extensively investigated is the rat portal vein, in which elevated intraluminal pressure in vivo over a few days causes hypertrophy and increased contractility (16, 21). In vitro, portal venous strips kept in organ culture under an applied l...
Leptin and adiponectin are differentially expressed adipokines in obesity and cardiovascular diseases. Leptin levels are directly associated with adipose tissue mass, while adiponectin levels are downregulated in obesity. Although significantly produced by adipocytes, leptin is also produced by vascular smooth muscle cells and cardiomyocytes. Plasma leptin concentrations are elevated in cases of cardiovascular diseases, such as hypertension, congestive heart failure, and myocardial infarction. As for the event of left ventricular hypertrophy, researchers have been stirring controversy about the role of leptin in this form of cardiac remodeling. In this review, we discuss how leptin has been shown to play an antihypertrophic role in the development of left ventricular hypertrophy through in vitro experiments, population-based cross-sectional studies, and longitudinal cohort studies. Conversely, we also examine how leptin may actually promote left ventricular hypertrophy using in vitro analysis and human-based univariate and multiple linear stepwise regression analysis. On the other hand, as opposed to leptin's generally detrimental effects on the cardiovascular system, adiponectin is a cardioprotective hormone that reduces left ventricular and vascular hypertrophy, oxidative stress, and inflammation. In this review, we also highlight adiponectin signaling and its protective actions on the cardiovascular system.
Various cardiovascular pathologies are associated with vascular smooth muscle cell (VSMC) hypertrophy and elevated plasma leptin levels. We used the rat portal vein (RPV) cultured for three days to investigate the effect of mechanical stretch on autocrine secretion of leptin and the effect of exogenous leptin (3.1 nM) on VSMC. Stretching the RPV significantly up-regulated leptin production by greater than 100-fold and leptin receptor expression by up to 10-fold. In addition, stretch increased tissue weight by 23 Ϯ 1.3 and 30 Ϯ 1% (P Ͻ 0.05), respectively, in the absence or presence of leptin, although this was significantly attenuated by an antileptin antibody (166 ng/ ml). Unstretched RPV weight decreased by 7.5 Ϯ 1.8% in the absence of leptin, whereas in the presence of leptin, weight increased by 6.5 Ϯ 1.8% (P Ͻ 0.05). VSMC size and [ 3 H]leucine incorporation rates were significantly increased by leptin in stretched and unstretched tissues. Leptin-induced hypertrophy was associated with significant extracellular signal-regulated kinase (ERK1/2) activation as well as increased expression of angiotensinogen, the angiotensin type 1 receptor as well as preproendothelin-1, and the endothelin type A receptor, whereas ERK inhibition or inhibition of either the angiotensin II or endothelin-1 systems at both the synthesis and receptor levels blocked the hypertrophic response. The effects of leptin were also completely blocked by the cholesterol-chelating agent methyl--cyclodextrin. Therefore, our study demonstrates stretch-dependent leptin release and a direct hypertrophic effect of leptin on RPV, the latter likely dependent on intact cholesterol-rich membrane microdomains and locally produced paracrine factors.
Abstract-Increased intraluminal pressure of the rat portal vein in vivo causes hypertrophy and altered contractility in 1 to 7 days. We have used organ cultures to investigate mechanisms involved in this adaptation to mechanical load. Strips of rat portal vein were cultured for 3 days, either undistended or loaded by a weight. Length-force relations were shifted toward longer length in stretched cultured veins compared with freshly dissected veins, whereas the length-force relations of unstretched cultured veins were shifted in the opposite direction. This occurred after culture either with or without 10% FCS to promote growth. The wet weight of loaded veins increased by 56% in the presence of FCS, whereas that of undistended control veins increased by 24%. No weight increase was seen in serum-free culture. The dry/wet weight ratio decreased during culture with FCS but was not affected by stretch. Electron microscopy revealed increased cell cross-sectional area in stretched relative to unstretched veins, and protein contents were greater, as were
Physical inactivity and sedentary lifestyle contribute to the widespread epidemic of obesity among both adults and children leading to rising cases of diabetes. Cardiovascular disease complications associated with obesity and diabetes are closely linked to insulin resistance and its complex implications on vascular cells particularly endothelial cells. Endoplasmic reticulum (ER) stress is activated following disruption in post-translational protein folding and maturation within the ER in metabolic conditions characterized by heavy demand on protein synthesis, such as obesity and diabetes. ER stress has gained much interest as a key bridging and converging molecular link between insulin resistance, oxidative stress, and endothelial cell dysfunction and, hence, represents an interesting drug target for diabetes and its cardiovascular complications. We reviewed here the role of ER stress in endothelial cell dysfunction, the primary step in the onset of atherosclerosis and cardiovascular disease. We specifically focused on the contribution of oxidative stress, insulin resistance, endothelial cell death, and cellular inflammation caused by ER stress in endothelial cell dysfunction and the process of atherogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.