Deep learning is one of the subsets of machine learning that is widely used in artificial intelligence (AI) field such as natural language processing and machine vision. The deep convolution neural network (DCNN) extracts high-level concepts from low-level features and it is appropriate for large volumes of data. In fact, in deep learning, the high-level concepts are defined by low-level features. Previously, in optimization algorithms, the accuracy achieved for network training was less and high-cost function. In this regard, in this study, AdaptAhead optimization algorithm was developed for learning DCNN with robust architecture in relation to the high volume data. The proposed optimization algorithm was validated in multi-modality MR images of BRATS 2015 and BRATS 2016 data sets. Comparison of the proposed optimization algorithm with other commonly used methods represents the improvement of the performance of the proposed optimization algorithm on the relatively large dataset. Using the Dice similarity metric, we report accuracy results on the BRATS 2015 and BRATS 2016 brain tumor segmentation challenge dataset. Results showed that our proposed algorithm is significantly more accurate than other methods as a result of its deep and hierarchical extraction.
Image segmentation is one of the most common steps in digital image processing, classifying a digital image into different segments. The main goal of this paper is to segment brain tumors in magnetic resonance images (MRI) using deep learning. Tumors having different shapes, sizes, brightness and textures can appear anywhere in the brain. These complexities are the reasons to choose a high-capacity Deep Convolutional Neural Network (DCNN) containing more than one layer. The proposed DCNN contains two parts: architecture and learning algorithms. The architecture and the learning algorithms are used to design a network model and to optimize parameters for the network training phase, respectively. The architecture contains five convolutional layers, all using 3 × 3 kernels, and one fully connected layer. Due to the advantage of using small kernels with fold, it allows making the effect of larger kernels with smaller number of parameters and fewer computations. Using the Dice Similarity Coefficient metric, we report accuracy results on the BRATS 2016, brain tumor segmentation challenge dataset, for the complete, core, and enhancing regions as 0.90, 0.85, and 0.84 respectively. The learning algorithm includes the task-level parallelism. All the pixels of an MR image are classified using a patch-based approach for segmentation. We attain a good performance and the experimental results show that the proposed DCNN increases the segmentation accuracy compared to previous techniques.
Video-based vehicle speed measurement systems are known as effective applications for Intelligent Transportation Systems (ITS) due to their great development capabilities and low costs. These systems utilize camera outputs to apply video processing techniques and extract the desired information. This paper presents a new vehicle speed measurement approach based on motion detection. Contrary to featurebased methods that need visual features of the vehicles like license-plate or windshield, the proposed method is able to estimate vehicle's speed by analyzing its motion parameters inside a pre-defined Region of Interest (ROI) with specified dimensions. This capability provides realtime computing and performs better than feature-based approaches. The proposed method consists of three primary modules including vehicle detection, tracking, and speed measurement. Each moving object is detected as it enters the ROI by the means of Mixture-of-Gaussian background subtraction method. Then by applying morphology transforms, the distinct parts of these objects turn into unified filled shapes and some defined filtration functions leave behind only the objects with the highest possibility of being a vehicle. Detected vehicles are then tracked using blob tracking algorithm and their displacement among sequential frames are calculated for final speed measurement module. The outputs of the system include the vehicle's image, its corresponding speed, and detection time. Experimental results show that the proposed approach has an acceptable accuracy in comparison with current speed measurement systems.
The process of detecting vehicles' license plates, along with recognizing the characters inside them, has always been a challenging issue due to various conditions. These conditions include different weather and illumination, inevitable data acquisition noises, and some other challenging scenarios like the demand for real-time performance in state-of-the-art Intelligent Transportation Systems (ITS) applications. This paper proposes a method for vehicle License Plates Detection (LPD) and Character Recognition (CR) as a unified application that presents significant accuracy and real-time performance. The mentioned system is designed for Iranian vehicle license plates, which have the characteristics of different resolution and layouts, scarce digits/characters, various background colors, and different font sizes. In this regard, the system uses a separate fine-tuned You Only Look Once (YOLO) version 3 platform for each of the mentioned phases and extracts Persian characters from input images in two automatic steps. For training and testing stages, a wide range of vehicle images in different challenging and straightforward conditions have been collected from practical systems installed as surveillance applications. Experimental results show an end-to-end accuracy of 95.05% on 5719 images. The test data included both color and grayscale images containing the vehicles with different distances and shooting angles with various brightness and resolution. Additionally, the system can perform the LPD and CR tasks in an average of 119.73 milliseconds for real life data, which illustrates a real-time performance for the system and usable applicability. The system is fully automated, and no pre-processing, calibration or configuration procedures are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.