The use of animal models in biology research continues to be necessary for the development of new technologies and medicines, and therefore crucial for enhancing human and animal health. In this context, the need to ensure the compliance of research with the principles Replacement, Reduction and Refinement (the 3 Rs), which underpin the ethical and human approach to husbandry and experimental design, has become a central issue. The zebrafish (Danio rerio) is becoming a widely used model in the field of behavioral neuroscience. In particular, studying zebrafish social preference, by observing how an individual fish interacts with conspecifics, may offer insights into several neuropsychiatric and neurodevelopmental disorders. The main aim of this review is to summarize principal factors affecting zebrafish behavior during social preference tests. We identified three categories of social research using zebrafish: studies carried out in untreated wild-type zebrafish, in pharmacologically treated wild-type zebrafish, and in genetically engineered fish. We suggest guidelines for standardizing social preference testing in the zebrafish model. The main advances gleaned from zebrafish social behavior testing are discussed, together with the relevance of this method to scientific research, including the study of behavioral disorders in humans. The authors stress the importance of adopting an ethical approach that considers the welfare of animals involved in experimental procedures. Ensuring a high standard of animal welfare is not only good for the animals, but also enhances the quality of our science.
This pilot study aimed at investigating how salivary oxytocin levels are affected by human interaction and isolation in eight guide dogs (six Labrador retrievers and two golden retrievers; four males and four females, 21.87 ± 1.36 months old) just before assignment to the blind person. Each dog engaged, at one-week intervals, in a positive (5 min of affiliative interaction with their trainer) and a negative (5 min of isolation) condition. Saliva samples used for Enzyme Immunoassay (EIA) quantification of salivary oxytocin were collected before and immediately after both experimental conditions. In order to assess potential hypothalamic pituitary adrenal (HPA) axis activation that could have affected oxytocin levels, saliva samples were collected 15 min after both experimental conditions for EIA quantification of salivary cortisol and a behavioral assessment was performed during the negative condition. The results were compared using the Wilcoxon test (p < 0.05). Oxytocin concentrations showed a statistically significant increase after the positive interaction (p = 0.036) and no difference after the negative one (p = 0.779). Moreover, no difference (p = 0.263) was found between the cortisol concentrations after each experimental condition and no signs of distress were observed during the isolation phase. These preliminary findings support the hypothesis that stroking dogs has positive effects on their emotional state independently of hypothalamic pituitary adrenal axis activation.
Animals’ facial expressions are involuntary responses that serve to communicate the emotions that individuals feel. Due to their close co-existence with humans, broad attention has been given to identifying these expressions in certain species, especially dogs. This review aims to analyze and discuss the advances in identifying the facial expressions of domestic dogs and their clinical utility in recognizing pain as a method to improve daily practice and, in an accessible and effective way, assess the health outcome of dogs. This study focuses on aspects related to the anatomy and physiology of facial expressions in dogs, their emotions, and evaluations of their eyebrows, eyes, lips, and ear positions as changes that reflect pain or nociception. In this regard, research has found that dogs have anatomical configurations that allow them to generate changes in their expressions that similar canids—wolves, for example—cannot produce. Additionally, dogs can perceive emotions similar to those of their human tutors due to close human-animal interaction. This phenomenon—called “emotional contagion”—is triggered precisely by the dog’s capacity to identify their owners’ gestures and then react by emitting responses with either similar or opposed expressions that correspond to positive or negative stimuli, respectively. In conclusion, facial expressions are essential to maintaining social interaction between dogs and other species, as in their bond with humans. Moreover, this provides valuable information on emotions and the perception of pain, so in dogs, they can serve as valuable elements for recognizing and evaluating pain in clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.