The Golgi apparatus is responsible for transporting, processing, and sorting numerous proteins in the cell, including cell surfaceexpressed receptor tyrosine kinases (RTK). The small-molecule compound M-COPA [2-methylcoprophilinamide (AMF-26)] disrupts the Golgi apparatus by inhibiting the activation of Arf1, resulting in suppression of tumor growth. Here, we report an evaluation of M-COPA activity against RTK-addicted cancers, focusing specifically on human gastric cancer (GC) cells with or without MET amplification. As expected, the MET-addicted cell line MKN45 exhibited a better response to M-COPA than cell lines without MET amplification. Upon M-COPA treatment, cell surface expression of MET was downregulated with a concurrent accumulation of its precursor form. M-COPA also reduced levels of the phosphorylated form of MET along with the downstream signaling molecules Akt and S6. Similar results were obtained in additional GC cell lines with amplification of MET or the FGF receptor FGFR2. MKN45 murine xenograft experiments demonstrated the antitumor activity of M-COPA in vivo. Taken together, our results offer an initial preclinical proof of concept for the use of M-COPA as a candidate treatment option for MET-addicted GC, with broader implications for targeting the Golgi apparatus as a novel cancer therapeutic approach. Cancer Res; 76(13); 3895-903. Ó2016 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.