In this paper we describe the conceptual design and cooling blade development of a 1700°C-class high-temperature gas turbine in the ACRO-GT-2000 (Advanced Carbon Dioxide Recovery System of Closed-Cycle Gas Turbine Aiming 2000 K) project. In the ACRO-GT closed cycle power plant system, the thermal efficiency aimed at is more than 60% of the higher heating value of fuel (HHV). Because of the high thermal efficiency requirement, the 1700°C-class high-temperature gas turbine must be designed with the minimum amount of cooling and seal steam consumption. The hybrid cooling scheme, which is a combination of closed loop internal cooling and film ejection cooling, was chosen from among several cooling schemes. The elemental experiments and numerical studies, such as those on blade surface heat transfer, internal cooling channel heat transfer, and pressure loss and rotor coolant passage distribution flow phenomena, were conducted and the results were applied to the conceptual design advancement. As a result, the cooling steam consumption in the first stage nozzle and blade was reduced by about 40% compared with the previous design that was performed in the WE-NET (World Energy Network) Phase-I.
This paper describes the conceptual design of a 600MW HTGR-GT power plant which has been completed in the framework of the HTGR-GT feasibility study project. The project is assigned to JAERI by the Science and Technology Agency in Japan. The inlet and outlet gas temperatures in the reactor are 460°C and 850°C, respectively. Helium gas pressure is 6MPa. The gas turbine system type is intercooled recuperative direct cycle. Designs of helium turbine, LP and HP compressors and generator are presented. Efforts have been focussed on reducing their dimensions and weight in the preliminary design to facilitate the mechanical design of the rotor and also reduce the size of power conversion vessel. Rotor dynamics behavior and maintenance procedures of the horizontal single-shaft configuration adopted are explained.
The effects of surface roughness of both nozzle and end-wall on a turbine nozzle performance were investigated experimentally using liner cascade wind tunnel facility under the Reynolds number (Re) condition of Re = 0.3∼1.0 × 106. With buffing, milling, sand blasting and shot blasting, the total of seven levels of the model surface roughness were realized. In order to clarify the effect of the nozzle surface roughness on the profile loss, total pressure losses were measured using three-hole probe for different levels of the surface roughness. It became clear the nozzle profile loss increases as Reynolds number increases for larger roughness group. In addition, it appeared the profile loss depends on not only maximum value of the surface roughness but also roughness conditions. In order to examine the effect of surface roughness on the secondary flow loss, spatial total pressure field of the secondary flow region was measured using three-hole probe for the cases of smooth or rough nozzle surface with smooth or rough end-wall. The secondary flow structures were recognized at the 5∼10% span-wise height region of the suction surface of the nozzle for all cases. With increasing the nozzle surface roughness, not only the profile loss but also net secondary flow loss increases, which is defined as the difference between the total pressure loss and the profile loss in the secondary flow region. However, increase of the end-wall roughness has higher effect on the net secondary flow loss increase. Difference of the effect between the nozzle surface roughness and the end-wall roughness on the nozzle secondary flow loss was discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.