The photochemical reactions of methylene blue (MB) included in water soluble sulfonated calix[n]arenes (n=4, 6, 8) are studied using a time-resolved ESR method. The CIDEP (chemically induced dynamic electron polarization) spectra show the formation of the complex radical pair composed of the MB monocation radical and calixarene (phenoxyl-type) radical. The lifetime and broadened spectral shape are dependent on the size of the calixarene and are due to the longitudinal and transverse relaxation mainly induced by the tumbling motion of the radical pair with the spin dipole-dipole interaction. The pair dissociates in a few hundreds of nanoseconds in cases of n = 6 and 8.
The triplet state radical-ion pair (RIP) formed in the photolysis of xanthone (Xn) and N,N-diethylaniline (DEA) in a highly viscous mixtures of 2-propanol and cyclohexanol was studied by time-resolved ESR. As the viscosity of the mixed solution increases, the spectrum reveals a magnetic dipole-dipole interaction in the triplet state of the RIP. Immediately after laser photolysis, the spin-polarized RIP spectrum exhibits magnetophotoselection (MPS). This suggests that the electron transfer (ET) reaction is faster than the longitudinal relaxation of the excited triplet state of Xn ((3)Xn*) or much faster than the tumbling motion of (3)Xn*. The former mechanism is likely under the conditions employed. Indeed, a huge RIP-cored aggregation is quickly formed with solvent molecules which obstruct the free revolution of the RIP. The MPS spectra also indicate that only the molecules closely located react by the solvent-mediated ET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.