Choosing the Right Path RNA molecules are synthesized in the cell nucleus, yet many have to be moved to the cytoplasm to be processed and/or to effect their function. Different classes of RNA are transported from the nucleus by different transport systems. Messenger RNAs (mRNAs) and uridine-rich small nuclear RNAs (U snRNAs) are transcribed by RNA polymerase II and are capped and bound by the cap-binding machinery in the nucleus but are exported by different protein complexes. The feature that distinguishes the two classes of RNA is their length: U snRNAs are short and mRNAs are long. Using an in vitro system and human tissue culture cells, McCloskey et al. (p. 1643 ) show that the length of the RNAs is measured by the heterogeneous nuclear ribonicleoprotein (hnRNP) C tetrameric protein complex. The hnRNP C cannot bind to the short U snRNAs, allowing the U snRNA-specific export adaptor protein, PHAX, to bind and mediate export. Longer mRNAs are bound by hnRNP C, which prevents the binding of PHAX, thus identifying these RNAs for export from the nucleus via the mRNA pathway.
Recent studies have shown that a subset of nucleoporins (Nups) can detach from the nuclear pore complex and move into the nuclear interior to regulate transcription. One such dynamic Nup, called Nup98, has been implicated in gene activation in healthy cells and has been shown to drive leukemogenesis when mutated in patients with acute myeloid leukemia (AML). Here we show that in hematopoietic cells, Nup98 binds predominantly to transcription start sites to recruit the Wdr82–Set1A/COMPASS (complex of proteins associated with Set1) complex, which is required for deposition of the histone 3 Lys4 trimethyl (H3K4me3)-activating mark. Depletion of Nup98 or Wdr82 abolishes Set1A recruitment to chromatin and subsequently ablates H3K4me3 at adjacent promoters. Furthermore, expression of a Nup98 fusion protein implicated in aggressive AML causes mislocalization of H3K4me3 at abnormal regions and up-regulation of associated genes. Our findings establish a function of Nup98 in hematopoietic gene activation and provide mechanistic insight into which Nup98 leukemic fusion proteins promote AML.
Intron-containing pre-mRNAs are retained in the nucleus until they are spliced. This mechanism is essential for proper gene expression. Although the formation of splicing complexes on pre-mRNAs is thought to be responsible for this nuclear retention activity, the details are poorly understood. In mammalian cells, in particular, very little information is available regarding the retention factors. Using a model reporter gene, we show here that U1 snRNP and U2AF but not U2 snRNP are essential for the nuclear retention of pre-mRNAs in mammalian cells, showing that E complex is the major entity responsible for the nuclear retention of pre-mRNAs in mammalian cells. By focusing on factors that bind to the 3¢-splice site region, we found that the 65-kD subunit of U2AF (U2AF 65 ) is important for nuclear retention and that its multiple domains have nuclear retention activity per se. We also provide evidence that UAP56, a DExD-box RNA helicase involved in both RNA splicing and export, cooperates with U2AF 65 in exerting nuclear retention activity. Our findings provide new information regarding the pre-mRNA nuclear retention factors in mammalian cells.
The total number of nuclear pore complexes (NPCs) per nucleus varies greatly between different cell types and is known to change during cell differentiation and cell transformation. However, the underlying mechanisms that control how many nuclear transport channels are assembled into a given nuclear envelope remain unclear. Here, we report that depletion of the NPC basket protein Tpr, but not Nup153, dramatically increases the total NPC number in various cell types. This negative regulation of Tpr occurs via a phosphorylation cascade of extracellular signal-regulated kinase (ERK), the central kinase of the mitogen-activated protein kinase (MAPK) pathway. Tpr serves as a scaffold for ERK to phosphorylate the nucleoporin (Nup) Nup153, which is critical for early stages of NPC biogenesis. Our results reveal a critical role of the Nup Tpr in coordinating signal transduction pathways during cell proliferation and the dynamic organization of the nucleus.
The assembly of spliceosomal U snRNPs in metazoans requires nuclear export of U snRNA precursors. Four factors, nuclear cap-binding complex (CBC), phosphorylated adaptor for RNA export (PHAX), the export receptor CRM1 and RanGTP, gather at the m7G-cap-proximal region and form the U snRNA export complex. Here we show that the multifunctional RNA-binding proteins p54nrb/NonO and PSF are U snRNA export stimulatory factors. These proteins, likely as a heterodimer, accelerate the recruitment of PHAX, and subsequently CRM1 and Ran onto the RNA substrates in vitro, which mediates efficient U snRNA export in vivo. Our results reveal a new layer of regulation for U snRNA export and, hence, spliceosomal U snRNP biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.