Working memory (WM) enables the flexible representation of information over short intervals. It is well established that WM performance can be enhanced by a retrospective cue presented during storage, yet the neural mechanisms responsible for this benefit are unclear. Here, we tested several explanations for retrospective cue benefits by quantifying changes in spatial WM representations reconstructed from alpha-band (8-12 Hz) EEG activity recorded from human participants (both sexes) before and after the presentation of a retrospective cue. This allowed us to track cue-related changes in WM representations with high temporal resolution (tens of milliseconds). Participants encoded the locations of two colored discs for subsequent report. During neutral trials, an uninformative cue instructed participants to remember the locations of both discs across a blank delay, and we observed a monotonic decrease in the fidelity of reconstructed spatial WM representations with time. During valid trials, a 100% reliable cue indicated that the color of the disc participants would be probed to report. Critically, valid cues were presented immediately after the termination of the encoding display ["valid early" (VE) trials] or midway through the delay period ["valid late" (VL) trials]. During VE trials, the gradual loss of location-specific information observed during neutral trials was eliminated, while during VL trials it was partially reversed. Our findings suggest that retrospective cues engage several different mechanisms that together serve to mitigate information loss during WM storage. Working memory (WM) performance can be improved by a cue presented during storage. This effect, termed a retrospective cue benefit, has been used to explore the limitations of attentional prioritization in WM. However, the mechanisms responsible for retrospective cue benefits are unclear. Here we tested several explanations for retrospective cue benefits by examining how they influence WM representations reconstructed from human EEG activity. This approach allowed us to visualize, quantify, and track the effects of retrospective cues with high temporal resolution (on the order of tens of milliseconds). We show that under different circumstances retrospective cues can both eliminate and even partially reverse information loss during WM storage, suggesting that retrospective cue benefits have manifold origins.
Working memory (WM) enables the flexible representation of information over short intervals. It is well-established that WM performance can be enhanced by a retrospective cue presented during storage, yet the neural mechanisms responsible for this benefit are unclear. Here, we tested several explanations for retro-cue benefits by quantifying changes in spatial WM representations reconstructed from alpha-band (8-12 Hz) EEG activity recorded from human participants (both sexes) before and after presentation of a retrospective cue. This allowed us to track cue-related changes in WM representations with high temporal resolution (tens of milliseconds). Participants encoded the locations of two colored discs for subsequent report. During neutral trials an uninformative cue instructed participants to remember the locations of both discs across a blank delay, and we observed a monotonic decrease in the fidelity of reconstructed spatial WM representations with time. During valid trials a 100% reliable cue indicated the color of the disc participants would be probed to report. Critically, valid cues were presented immediately after termination of the encoding display (“valid early”, or VE trials) or midway through the delay period (“valid late” or VL trials). During VE trials the gradual loss of location-specific information observed during neutral trials was eliminated, while during VL trials it was partially reversed. Our findings suggest that retro-cues engage several different mechanisms that together serve to mitigate information loss during WM storage.Significance StatementWorking memory (WM) performance can be improved by a cue presented during storage. This effect, termed a retrospective cue benefit, has been used to explore the limitations of attentional prioritization in WM. However, the mechanisms responsible for retrospective cue benefits are unclear. Here we tested several explanations for retrospective cue benefits by examining how they influence WM representations reconstructed from human EEG activity. This approach allowed us to visualize, quantify, and track the effects of retrospective cues with high temporal resolution (on the order of tens of milliseconds). We show that under different circumstances retrospective cues can both eliminate and even partially reverse information loss during WM storage, suggesting that retrospective cue benefits have manifold origins.
Working memory (WM) is a capacity- and duration-limited system that forms a temporal bridge between sensory phenomena and action. Capacity limits in WM necessitate the existence of external selection mechanisms that control access to this system (i.e., input gating), while changing behavioral demands necessitate the existence of internal selection mechanisms that prioritize existing WM representations for action (i.e., output gating). Whether similar mechanisms mediate WM input and output gating is unclear. We examined this possibility by exploiting a well-known distinction between top-down (endogenous) and bottom-up (exogenous) selection. Specifically, we examined how endogenous and exogenous factors compete to control the selection of WM content by examining their effects on EEG decoding performance. We found no evidence for a reflexive selection of task-irrelevant WM content when endogenous and exogenous factors conflicted. Instead, the selection of task-relevant WM content was delayed when these factors conflicted compared to when they were aligned. Thus, unlike external attention where the real-time balance of competition between endogenous and exogenous factors determines what information is selected, the selection of task-relevant WM content is delayed until competition between endogenous and exogenous factors is resolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.