Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Dose was escalated to the target dose of 40 Gy in 5 fractions, with the occurrence of only 1 dose-limiting toxicity. Patients felt cosmetic results improved within the first year after surgery and stereotactic body radiation therapy. Our results show minimal toxicity with excellent cosmesis; however, further follow-up is warranted in future studies. This study is the first to show the safety, tolerability, feasibility, and cosmesis results of a 5-fraction dose-escalated S-PBI treatment for early-stage breast cancer in the adjuvant setting.
We illustrate that antiplatelet agent use improves DMR and DFS among a stage II and III TNBC population despite our short follow-up evaluation. Longer follow-up evaluation will be required to determine additional outcome advantage for antiplatelet agent use. Our findings support consideration of investigation of antiplatelet therapy as an adjunctive therapy for TNBC at high risk for disease recurrence.
Microwave imaging (MI) technology has come a long way to introduce a noninvasive, inexpensive, fast, convenient, and safe screening tool for clinical breast monitoring. However, there is a niche between the existing understanding of MI by engineers versus clinicians. Our manuscript targets that niche and highlights the state of the art in MI technology compared to the existing breast cancer detection modalities (mammography, ultrasound, molecular imaging, and magnetic resonance). The significance of our review article is in consolidation of up-to-date breast clinician views with the practical needs and engineering challenges of a novel breast screening modality. We summarize breast tissue abnormalities and highlight the benefits as well as potential drawbacks of the MI as a cancer detection methodology. Our goal is to present an article that MI researchers as well as practitioners in the field can use to assess the viability of the MI technology as a competing or complementary modality to the existing means of breast cancer screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.