<p><em>The number of bone damage in Indonesia continues to increase. Bone implant is one of the medical treatment methods performed on bone damage. Organic and non-organic materials can be used as bone implants. Non-organic materials are stronger, but not biocompatible, while organic materials are biocompatible, but brittle. The addition of polycaprolactone polymer (PCL) can increase the mechanical strength of 3D printing bone implant filaments. Extruder melting temperature is one of the factors that affect the quality of PCL-HAp filaments for bone implants. Studies related to temperature variations in PCL-HAp materials have not been widely studied. Therefore, it is necessary to characterize 3D printing filaments with variations in the melting temperature of the extruder as bone implants from mussel shells with temperature variables of 65<sup>o</sup>C, 75<sup>o</sup>C, and 85<sup>o</sup>C. From this study, the optimum point was found at the melting extruder temperature of 75<sup>o</sup>C with the results of a diameter of 1.810 and mechanical strength which showed an increase in tensile strength and Young's modulus of PCL-HAp composite in all variables compared to pure PCL. The SEM test showed a rough surface on the filaments that could increase the proliferation and adhesion of good cells for the growth of bone tissue.</em></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.