The backbone dihedral parameters of the Amber RNA force field were improved by fitting using multiple linear regression to potential energies determined by quantum chemistry calculations. Five backbone and four glycosidic dihedral parameters were fit simultaneously to reproduce the potential energies determined by a high-level density functional theory calculation (B97D3 functional with the AUG-CC-PVTZ basis set). Umbrella sampling was used to determine conformational free energies along the dihedral angles, and these better agree with the population of conformations observed in the protein data bank for the new parameters than for the conventional parameters. Molecular dynamics simulations performed on a set of hairpin loops, duplexes and tetramers with the new parameter set show improved modeling for the structures of tetramers CCCC, CAAU, and GACC, and an RNA internal loop of noncanonical pairs, as compared to the conventional parameters. For the tetramers, the new parameters largely avoid the incorrect intercalated structures that dominate the conformational samples from the conventional parameters. For the internal loop, the major conformation solved by NMR is stable with the new parameters, but not with the conventional parameters. The new force field performs similarly to the conventional parameters for the UUCG and GCAA hairpin loops and the [U(UA)6A]2 duplex.
PreQ 1 -III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ 1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HL out -type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ 1 -III riboswitch aptamer forms a HL out -type pseudoknot that does not appear to incorporate its ribosome-binding site (RBS). To understand how this unusual organization confers function, we determined the crystal structure of the class III preQ 1 riboswitch from Faecalibacterium prausnitzii at 2.75 Å resolution. PreQ 1 binds tightly (K D,app 6.5 ± 0.5 nM) between helices P1 and P2 of a three-way helical junction wherein the third helix, P4, projects orthogonally from the ligand-binding pocket, exposing its stem-loop to base pair with the 3′ RBS. Biochemical analysis, computational modeling, and single-molecule FRET imaging demonstrated that preQ 1 enhances P4 reorientation toward P1-P2, promoting a partially nested, H-type pseudoknot in which the RBS undergoes rapid docking (k dock ∼0.6 s −1 ) and undocking (k undock ∼1.1 s −1 ). Discovery of such dynamic conformational switching provides insight into how a riboswitch with bipartite architecture uses dynamics to modulate expression platform accessibility, thus expanding the known repertoire of gene control strategies used by regulatory RNAs. preQ 1 riboswitch | gene regulation | crystal structure | single-molecule FRET | molecular dynamics R iboswitches are structured RNA motifs that sense the cellular levels of small molecules to provide feedback regulation of genes (1). Although present in all domains of life, they are prominent in bacteria where they typically reside in the 5′-leader sequences of mRNA (2). Broad interest in riboswitches originates from the discovery that they can be targeted by antimicrobials (3-5), and the observation that they use complex scaffolds to achieve gene regulation without the need for protein partners. In the latter respect, riboswitches typically exhibit bipartite sequence organization comprising a conserved aptamer linked to a downstream expression platform (2). Aptamer binding to a cognate effector can induce conformational changes that alter the accessibility of expression platform sequences, such as those required for transcriptional read-through, or hybridization to the 16S rRNA as a preface to translation (2, 6).Numerous riboswitches fold as pseudoknots that conform to the H-type or closely related HL out -type topology, which have emerged as the most efficient RNA scaffolds to integrate aptamer and expression platform sequences (7). The preQ 1 -I, preQ 1 -II, S-adenosyl-L-methionine-II (SAM-II), and fluoride riboswitches are representative of this organizational strategy, and their analysis has contributed to a renaissance in our understanding of regulatory pseudoknot structure and dynamics (8-18). By contrast, pseudoknotted aptamers that do not integr...
We present an extension of the CHARMM Drude polarizable force field to enable modeling of polysaccharides containing pyranose and furanose monosaccharides. The new force field parameters encompass 1↔2, 1→3, 1→4, and 1→6 pyranose-furanose linkages, 2→1 and 2→6 furanose-furanose linkages, 2→2, 2→3, and 2→4 furanose-pyranose, and 1↔1, 1→2, 1→3, 1→4, and 1→6 pyranose-pyranose linkages. For the glycosidic linkages, both simple model compounds and the full disaccharides with methylation at the reducing end were used for parameter optimization. The model compounds were chosen to be monomers or glycosidic-linked dimers of tetrahydropyran (THP) and tetrahydrofuran (THF). Target data for optimization included one- and two-dimensional potential energy scans of ω and the Φ/Ψ glycosidic dihedral angles in the model compounds and full disaccharides computed by quantum mechanical (QM) RIMP2/cc-pVQZ single point energies on MP2/6-31G(d) optimized structures. Also included in the target data are extensive sets of QM gas phase monohydrate water-saccharide interactions, dipole moments, and molecular polarizabilities for both model compounds and full disaccharides. The resulting polarizable model is shown to be in good agreement with a range of QM data, offering a significant improvement over the additive CHARMM36 carbohydrate force field, as well as experimental data including crystal structures and conformational properties of disaccharides and a trisaccharide in aqueous solution.
Motivated by underestimation of the diffusion constant of glucose in aqueous solution at high glucose concentrations we performed additional optimization of the Drude polarizable hexopyranose monosaccharide force field. This indicated aggregation of the glucose at higher concentrations, which is a concern for studies of complex glycan systems such as the HIV Envelope where high effective concentrations of sugars are present. High-level quantum mechanical calculations were undertaken on water monohydrate-glucose interactions, on water cluster-glucose interactions and on glucose-glucose dimers in stacked (parallel) and perpendicular orientations. Optimization of the nonbond and dihedral parameters targeting these data yielded a revised model that showed improved agreement with experimental aqueous diffusion data. However, limitations in the diffusion constants were still present. These were due to the SWM4-NDP inherently overestimating the diffusion constant of water, a problem that was validated by calculation of the aqueous diffusion constants using the SWM6-NDP water model. In addition, results show the water diffusion constant to be significantly overestimated at high glucose concentrations though the glucose diffusion is in satisfactory agreement with experiment. These results indicate the subtle balance of water-sugar, water-water and sugar-sugar interactions that needs to be properly modeled to account for the full range of aqueous behavior of sugars in aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.