The main objective of the paper is to design a model reference adaptive controller (MRAC) with improved transient performance. A modification to the standard direct MRAC called fuzzy modified MRAC (FMRAC) is used in the paper. The FMRAC uses a proportional control based Mamdani-type fuzzy logic controller (MFLC) to improve the transient performance of a direct MRAC. The paper proposes the application of real-coded genetic algorithm (RGA) to tune the membership function parameters of the proposed FMRAC offline so that the transient performance of the FMRAC is improved further. In this study, a GA based modified MRAC (GAMMRAC), an FMRAC, and a GA based FMRAC (GAFMRAC) are designed for a coupled tank setup in a hybrid tank process and their transient performances are compared. The results show that the proposed GAFMRAC gives a better transient performance than the GAMMRAC or the FMRAC. It is concluded that the proposed controller can be used to obtain very good transient performance for the control of nonlinear processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.