Energy sufficiency is a critical requirement for the economic prosperity of modern countries. Efficient harnessing of solar energy using technologies such as the dye-sensitized solar cell could solve the energy problem which persistently plagues developing countries. Despite having a simple operational procedure and modest power conversion efficiency of 13.8%, the dye-sensitized solar cell consists of an expensive platinum counter electrode which makes commercial success futile. Thus, this review intends to establish the progress researchers have attained in the development of sulphide based counter electrodes as alternatives to platinum, thereby lowering cost of production. Metallic sulphides are good electrocatalysts and cheap, hence, they possess the necessary requirements for effective functional counter electrodes. Furthermore, ternary metallic sulphides are known to exhibit higher efficiencies stemming from the synergistic effect produced by the co-existence of two metal ions in a crystal structure, which is believed to induce greater catalytic capability. Incorporation of metallic sulphides with carbon materials, which are exceptional electrical conductors, could potentially produce more efficient counter electrodes. In that regard, this review seeks to establish the effect recently developed composite counter electrodes comprising metallic sulphides and carbon-based materials have induced on the functionality of the counter electrode (CE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.