Sentiment analysis (SA) is a useful NLP task. There are hundreds of Arabic sentiments analysis systems. However, because of the morphological nature of the Arabic languages, there are still many challenges that need more work. In this paper, two classifiers have been used: Naive Bayes and CNN-LSTM models. The experiments are conducted on Arabic tweets dataset that consists of 58k tweets written in several dialects, the same preprocessing steps have been done before fitting the models. The experimental results show that the deep Learning CNN-LSTM classifier fits better for this task which achieved an accuracy of 98% while Naive Bayes achieved 87.6%. Povzetek: .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.