Water pollution is one of the most serious environmental issues globally due to its harmful consequences on the ecosystem and public health. Various technologies have been developed for water treatment such as photocatalysis, which has recently drawn scientists’ attention. Photocatalytic techniques using semiconductors have shown an efficient removal of various water contaminants during water treatment as well as cost effectivity and low energy consumption. Tungsten disulfide (WS2) is among the promising Transition Metal Dichalcogenides (TMDs) photocatalysts, as it has an exceptional nanostructure and special properties including high surface area and high carrier mobility. It is usually synthesized via hydrothermal technique, chemical vapor deposition (CVD), and liquid-phase exfoliation (LPE) to obtain a wide variety of nanostructures such as nanosheets and nanorods. Most common examples of water pollutants that can be removed efficiently by WS2-based nanomaterials through semiconductor photocatalytic techniques are organic contaminants, pharmaceuticals, heavy metals, and infectious microorganisms. This review summarizes the most recent work on employing WS2-based nanomaterials for different photocatalytic water treatment processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.