Tigecycline (TIGC) reacts with 7,7,8,8-tetracyanoquinodimethane (TCNQ) to form a bright green charge transfer complex (CTC). The spectrum of the CTC showed multiple charge transfer bands with a major peak at 843 nm. The Plackett–Burman design (PBD) was used to investigate the process variables with the objective being set to obtaining the maximum absorbance and thus sensitivity. Four variables, three of which were numerical (temperature—Temp; reagent volume—RV; reaction time—RT) and one non-numerical (diluting solvent—DS), were studied. The maximum absorbance was achieved using a factorial blend of Temp: 25 °C, RV: 0.50 mL, RT: 60 min, and acetonitrile (ACN) as a DS. The molecular composition that was investigated using Job’s method showed a 1:1 CTC. The method’s validation was performed following the International Conference of Harmonization (ICH) guidelines. The linearity was achieved over a range of 0.5–10 µg mL−1 with the limits of detection (LOD) and quantification (LOQ) of 166 and 504 ng mL−1, respectively. The method was applicable to TIGC per se and in formulations without interferences from common additives. The application of the Benesi–Hildebrand equation revealed the formation of a stable complex with a standard Gibbs free energy change (∆G°) value of −26.42 to −27.95 kJ/mol. A study of the reaction kinetics revealed that the CTC formation could be best described using a pseudo-first-order reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.