Boron is a commonly used p‐type dopant for semiconductor and photonic applications. In this study, standard photocatalytic titanium dioxide (TiO2) particles were doped with nanosized boron particles and coated on textiles to bring the photocatalytic light intensity closer to the visible light range. Boron/titania nanoparticle composites were initially prepared in DI water solutions and studied for their photocatalytic response through a statistical central composite design. To determine the most effective titania and nanoboron particle blend for photocatalytic textile coating, absorbance and stain bleach analyses were performed by UV light exposure. The performance of the composite particles at the optimal concentration has also been evaluated in the finishing solution and compared with the performances of the pure titania particles. It was found that the textiles coated with 0.08 wt% anatase doped with 0.16 wt% nanoboron as a p‐type dopant provided improvement in self‐cleaning ability under the visible light range in the DI water environment. Energy band gap calculations further verified the nanoboron‐doped titania blend to have a lower energy barrier as compared with the 0.1 wt% anatase in agreement with the photocatalytic activity improvements. Nanoboron is shown to be a strong candidate as a p‐type dopant to titania for photocatalytic textile coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.