Breast cancer is the most common in women worldwide, with some 5-10% of all cases due to inherited mutations of BRCA1 and BRCA2 genes. Obesity, hormone therapy and use of alcohol are possible causes and over-expression of leptin in adipose tissue may also play a role. Normally surgery, radiation therapy and chemotherapy allow a good prognosis where screening measures are in place. New hope in treatment measures include adjuvant therapy, neoadjuvant therapy, and introduction of mono-clonal antibodies and enzyme inhibitors.
Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident. Dysregulation of miRNAs in the placenta not only affects placental development and function, but these miRNAs can also be exported to both maternal and fetal compartments and affect maternal physiology and fetal growth and development. Due to their differential expression in the placenta and maternal circulation during pregnancy complications, miRNAs can be used as diagnostic biomarkers. However, the differential expression of a miRNA in the placenta may not always be reflected in maternal circulation, which makes it difficult to find a reliable biomarker for placental dysfunction. In this review, we provide an overview of differentially expressed miRNAs in the placenta and/or maternal circulation during preeclampsia (PE) and intrauterine growth restriction (IUGR), which can potentially serve as biomarkers for prediction or diagnosis of pregnancy complications. Using different bioinformatics tools, we also identified potential target genes of miRNAs associated with PE and IUGR, and the role of miRNA-mRNA networks in the regulation of important signaling pathways and biological processes.
Chorionic Somatomammotropin (CSH) is one of the most abundantly produced placental hormones, yet its exact function remains elusive. Near-term (135 dGA), CSH RNA interference (RNAi) results in two distinct phenotypes: 1) pregnancies with intrauterine growth restriction (IUGR), and 2) pregnancies with normal fetal and placental weights. Here we report the physiological changes in CSH RNAi pregnancies without IUGR. The trophectoderm of hatched blastocysts (9 dGA) were infected with lentiviral-constructs expressing either a scrambled control (Control RNAi) or CSH-specific shRNA (CSH RNAi), prior to transfer into synchronized recipient ewes. At 126 dGA, Control RNAi (n = 6) and CSH RNAi (n = 6) pregnancies were fitted with maternal and fetal catheters. Uterine and umbilical blood flows were measured at 132 dGA and nutrient uptakes were calculated by the Fick principle. Control RNAi and CSH RNAi pregnancies were compared by analysis of variance, and significance was set at P ≤ 0.05. Absolute (ml/min) and relative (ml/min/kg fetus) uterine blood flows were reduced (P ≤ 0.05) in CSH RNAi pregnancies, but umbilical flows were not impacted. The uterine artery-to-vein glucose gradient (mmol/l) was significantly (P ≤ 0.05) increased. The uteroplacental glucose uptake (μmol/min/kg placenta) was increased (P ≤ 0.05), whereas umbilical glucose uptake (μmol/min/kg fetus) was reduced. Our results demonstrate that CSH RNAi has significant physiological ramifications, even in the absence of IUGR, and comparing CSH RNAi pregnancies exhibiting both IUGR and non-IUGR phenotypes may help determine the direct effects of CSH and its potential impact on fetal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.