Type-II Cu2GeS3/InP core/shell quantum dots (QDs) are designed using density functional theory and synthesized by a hot injection method in order to enhance the power conversion efficiency of quantum dot sensitized solar cells. The low toxicity and an absorption extending to the infrared region are key aspects of the importance of these QDs. The longer absorption achieved for type-II Cu2GeS3/InP QDs compared to single core Cu2GeS3 QDs is achieved by optimization of the band alignment. This leads to a more efficient carrier separation and a suppression of the electron-hole recombination. The results show that the efficiency and the electron injection rate constant increase by more than 5 and 2 times, respectively.
In the present paper hybrid core–shell InP/ZnS quantum dots were prepared by the one pot synthesis method which does not require additional component injections and which complies more with cost requirements. The synthesized quantum dots were characterized by X-ray diffraction and optical spectroscopy methods. The applicability of the synthesized InP/ZnS core–shell particles in inverted solar cells fabricated with a step-by-step procedure which combines thermal vacuum deposition and spin-coating techniques was investigated. The resulting efficiency of the fabricated inverted solar cell is comparable to that of quantum-dot sensitized TiO2 based solar cells. Therefore, hybrid core–shell InP/ZnS particles can be considered as multifunctional light-harvesting materials useful for implementation in different types of photovoltaic devices, such as quantum dot sensitized solar cells and inverted solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.