These results suggest that the GSH synthesis rate and concentration can be restored during the early phase of treatment if patients are supplemented with cysteine.
Aims/HypothesesWe hypothesized that there is decreased synthesis of glutathione (GSH) in type 2 diabetes (T2DM) especially in the presence of microvascular complications, and this is dependent on the degree of hyperglycemia.MethodsIn this case-control study, we recruited 16 patients with T2DM (7 without and 9 with microvascular complications), and 8 age- and sex-matched non-diabetic controls. We measured GSH synthesis rate using an infusion of [2H2]-glycine as isotopic tracer and collection of blood samples for liquid chromatography mass spectrometric analysis.ResultsCompared to the controls, T2DM patients had lower erythrocyte GSH concentrations (0.90 ± 0.42 vs. 0.35 ± 0.30 mmol/L; P = 0.001) and absolute synthesis rates (1.03 ± 0.55 vs. 0.50 ± 0.69 mmol/L/day; P = 0.01), but not fractional synthesis rates (114 ± 45 vs. 143 ± 82%/day; P = 0.07). The magnitudes of changes in patients with complications were greater for both GSH concentrations and absolute synthesis rates (P-values ≤ 0.01) compared to controls. There were no differences in GSH concentrations and synthesis rates between T2DM patients with and without complications (P-values > 0.1). Fasting glucose and HbA1c did not correlate with GSH concentration or synthesis rates (P-values > 0.17).ConclusionsCompared to non-diabetic controls, patients with T2DM have glutathione deficiency, especially if they have microvascular complications. This is probably due to reduced synthesis and increased irreversible utilization by non-glycemic mechanisms.
BackgroundSevere acute malnutrition in childhood manifests as oedematous (kwashiorkor, marasmic kwashiorkor) and non-oedematous (marasmus) syndromes with very different prognoses. Kwashiorkor differs from marasmus in the patterns of protein, amino acid and lipid metabolism when patients are acutely ill as well as after rehabilitation to ideal weight for height. Metabolic patterns among marasmic patients define them as metabolically thrifty, while kwashiorkor patients function as metabolically profligate. Such differences might underlie syndromic presentation and prognosis. However, no fundamental explanation exists for these differences in metabolism, nor clinical pictures, given similar exposures to undernutrition. We hypothesized that different developmental trajectories underlie these clinical-metabolic phenotypes: if so this would be strong evidence in support of predictive adaptation model of developmental plasticity.Methodology/Principal FindingsWe reviewed the records of all children admitted with severe acute malnutrition to the Tropical Metabolism Research Unit Ward of the University Hospital of the West Indies, Kingston, Jamaica during 1962–1992. We used Wellcome criteria to establish the diagnoses of kwashiorkor (n = 391), marasmus (n = 383), and marasmic-kwashiorkor (n = 375). We recorded participants' birth weights, as determined from maternal recall at the time of admission. Those who developed kwashiorkor had 333 g (95% confidence interval 217 to 449, p<0.001) higher mean birthweight than those who developed marasmus.Conclusions/SignificanceThese data are consistent with a model suggesting that plastic mechanisms operative in utero induce potential marasmics to develop with a metabolic physiology more able to adapt to postnatal undernutrition than those of higher birthweight. Given the different mortality risks of these different syndromes, this observation is supportive of the predictive adaptive response hypothesis and is the first empirical demonstration of the advantageous effects of such a response in humans. The study has implications for understanding pathways to obesity and its cardio-metabolic co-morbidities in poor countries and for famine intervention programs.
Although the compromised GSH status of children with edematous protein-energy malnutrition (PEM) has been documented, the in vivo kinetic mechanism(s) responsible for this is not known. To determine if decreased synthesis contributes to the alteration of GSH homeostasis, the fractional and absolute rates of synthesis of erythrocyte GSH were determined shortly after admission (study 1), approximately 9 days postadmission (study 2), and at recovery (study 3) in seven children with edematous PEM and seven children with nonedematous PEM. Children with edematous PEM had significantly lower erythrocyte GSH and slower absolute rates of GSH synthesis than children with nonedematous PEM both shortly after admission, when they were both malnourished and infected, and approximately 9 days later, when the infection had resolved but they were still malnourished. At these times, the edematous group also had significantly lower erythrocyte GSH concentrations and absolute rates of synthesis than at recovery. Plasma and erythrocyte-free cysteine concentrations of the edematous group were significantly lower at studies 1 and 2 than at recovery. In contrast, erythrocyte GSH concentrations, rates of GSH synthesis, and plasma and erythrocyte free cysteine concentrations of the nonedematous group were similar at all three time points and greater at studies 1 and 2 than in the edematous group. These results confirm that GSH deficiency is characteristic of edematous PEM and suggest that this is due to a reduced rate of synthesis secondary to a shortage in cysteine.
The major clinical syndromes of severe childhood malnutrition (SCM) are marasmus (non-oedematous SCM), kwashiorkor and marasmic-kwashiorkor (oedematous SCM). Whereas treatment of marasmus is straightforward and the associated mortality is low, kwashiorkor and marasmic-kwashiorkor are difficult to treat and have high morbidity and mortality rates. Despite extensive research, the pathogenic factors which cause a child to develop the oedematous instead of the non-oedematous form of SCM in response to food deprivation are still not clear. Over the years, two attractive hypotheses have been put forward. The first proposed that a dysadaptation in protein metabolism was involved and the second proposed that free radical damage of cellular membranes might be involved. To address aspects of these hypotheses, in this article we have reviewed work done by our group and by others on protein metabolism and pro-oxidant/anti-oxidant homeostasis in children with the oedematous and non-oedematous syndromes of SCM. A significant finding is that when there is chronic food deprivation children with non-oedematous SCM can maintain body protein breakdown at the same rate as when they are well nourished, but children with oedematous SCM cannot. The slower protein breakdown rate of children with oedematous SCM reduces the supply of most amino acids, resulting in decreased availability for the synthesis of plasma proteins involved in nutrient transport and the acute phase response to infection. Another consistent finding is that children with oedematous SCM have oxidative stress as there is evidence of oxidant-induced cellular damage and impaired synthesis of the primary cellular anti-oxidant glutathione.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.