COVID-19 pandemic caused by the SARS-CoV-2 virus has led to a worldwide crisis. In view of emerging variants time to time, there is a pressing need of effective COVID-19 therapeutics. Setomimycin, a rare tetrahydroanthracene antibiotic, remained unexplored for its therapeutic uses. Herein, we report our investigations on the potential of setomimycin as COVID-19 therapeutic. Pure setomimycin was isolated from
Streptomyces
sp. strain RA-WS2 from NW Himalayan region followed by establishing in silico as well as in vitro anti-SARS-CoV-2 property of the compound against SARS-CoV-2 main protease (M
pro
). It was found that the compound targets M
pro
enzyme with an IC
50
value of 12.02 ± 0.046 μM. The molecular docking study revealed that the compound targets Glu166 residue of M
pro
enzyme, hence preventing dimerization of SARS-CoV-2 M
pro
monomer. Additionally, the compound also exhibited anti-inflammatory and anti-oxidant property, suggesting that setomimycin may be a viable option for application against COVID-19 infections.
Graphical abstract
Consistent production of bioactives from microbial sources remains a big challenge for fermentation based bio-processes. Setomimycin, a rare 9,9'-bianthrylanthracene antibiotic reported to be active against Gram positive bacteria i.e. Staphyloccocus aureus, Bacillus subtilis, Bacillus cereus, and Mycobacterium smegmatis, including mycobacteria is one of the least exploited antibiotic. Present work aims to enhance and maximize setomimycin production using One Factor at a Time (OFAT) approach, followed by Taguchi L9 orthogonal array (OA) design in 30L fermenter. Four most influential parameters, namely carbon source, nitrogen source, air and agitation were selected for optimization studies. The optimized production medium supplemented with 150 g/L glycerol and 7.5 g/L soyabean meal with an agitation rate of 100 RPM and air flow rate of 20 LPM (Liters Per Minute) resulted in 675 mg/L setomimycin production within 96–108 h of fermentation as compared to the initial production i.e. 40 mg/L. Thus, an overall enhancement of 16.8 folds was achieved in setomimycin production after optimization in 30L fermenter.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.