Methylene blue (MB) is abundantly found in textile industrial effluent which can cause severe health problems for public and environmental ecology. Therefore, this study aimed to remove MB from textile wastewater using the activated carbon developed from Rumexabyssinicus. The adsorbent was activated using chemical and thermal methods, and then it was characterized by SEM, FTIR, BET, XRD, and pH zero-point charge (pHpzc). The adsorption isotherm and kinetics were also investigated. The experimental design was composed of four factors at three levels (pH (3, 6, and 9), initial MB concentration (100, 150, and 200 mg/L), adsorbent dosage (20, 40, and 60 mg/100 mL), and contact time (20, 40, and 60 min)). The adsorption interaction was evaluated using response surface methodology. The characterization of a Rumexabyssinicus activated carbon was found to have multiple functional groups (FTIR), an amorphous structure (XRD), crack with ups and down morphology (SEM), pHpzc of 5.03 and a high BET-specific surface area of 2522 m2/g. The optimization of MB dye removal was carried out using the Response Surface methodology coupled with the Box Behnken approach. The maximum removal efficiency of 99.9% was recorded at optimum conditions of pH 9, MB concentration of 100 mg/L, the adsorbent dosage of 60 mg/100 mL, and contact time of 60 min. Among the three adsorption isotherm models, the Freundlich isotherm model was the best fit with an experimental value at R2 0.99 showing the adsorption process was heterogeneous and multilayer whereas the kinetics study revealed that pseudo-second-order at R2 0.88. Finally, this adsorption process is quite promising to be used at an industrial level.
Tannery hair wastes are becoming a challenge for tanners regarding environmental pollution control and human health. In this study, an experiment had been designed to hydrolyse sheep hair in an alkaline medium, and the operational condition for the alkaline extraction of KH has been modeled and optimized. The structure, morphology, functional groups, particle size, and molecular mass of the KH extracts were evaluated experimentally by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), particle size analysis, and SDS-PAGE analysis, respectively. FTIR analysis of the extract confirmed the presence of carboxylic, amide, and aldehyde functional groups and alkyl side chains of amino acids. The molecular weight of the extracted keratin ranges between 3–15 kDa, and X-ray diffraction (XRD) analysis showed an amorphous form of structure with two peaks at 2 theta of 9.36° and 21.16° due to α -helix and β - sheet structure in keratin. Response surface methodology (RSM) coupled with BOX-Behnken design was applied as a statistical tool to investigate the effect of extraction time, the concentration of the hydrolysing agent, and temperature on the response variable (yield of keratin protein). The concentration of the hydrolysing agent was found to be the most significant factor affecting the speed of extraction, but its gradual increase tends to affect the protein content of the extract. Optimum parameters of 0.5 N, 80°C, and 3.5 hr were obtained for the concentration of NaOH, temperature, and extraction time, respectively, with a maximum average protein yield of 91.5% and a percentage total nitrogen content of 14.6% using the Kjeldahl method and 86.57% using the biuret test method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.