We investigated the effect of pH (5.5-8.5) on the mineralogical transformation of hexagonal birnessite induced by reaction with aqueous Mn(II) (50-2200 μM), using batch sorption experiments, X-ray diffraction analyses, X-ray absorption and infrared spectroscopic measurements. Samples reacted at pH < 7.0 exhibited disrupted stacking of birnessite sheets, but no mineralogical transformation products were observed. At pH 7.0 and 7.5, reaction with Mn(II) under anoxic conditions caused reductive transformation of birnessite into manganite (γ-MnOOH), whereas at pH 8.0 and 8.5, conversion into hausmannite (Mn3O4) occurred. Feitknechtite (β-MnOOH) is a major transformation product at low Mn(II) inputs at pH 7.0-8.5, and represents a metastable reaction intermediate that is converted into manganite and possibly hausmannite during further reaction with Mn(II). Thermodynamic calculations suggest that conversion into hausmannite at alkaline pH reflects a kinetic effect where rapid hausmannite precipitation prevents formation of thermodynamically more favorable manganite. In oxic systems, feitknechtite formation due to surface catalyzed oxidation of Mn(II) by O2 increases Mn(II) removal relative to anoxic systems at pH ≥ 7. The results of this study suggest that aqueous Mn(II) is an important control on the mineralogy and reactivity of natural Mn-oxides, particularly in aqueous geochemical environments with neutral to alkaline pH values.
Combined batch sorption and in situ X-ray absorption spectroscopy provide direct assessment of the mechanisms for Pb(II) sorption atthe calcite--water interface under low-temperature conditions. At low metal concentration, 1 microM initial Pb, X-ray absorption fine structure data indicate the formation of Pb mononuclear inner-sphere complexes at the surface. A first-shell Pb-O bond length of 2.34 A is consistent with nearest oxygen neighbors in 3- or 4-fold coordination with a distorted trigonal pyramidal or square pyramidal geometry with a stereochemically active electron lone pair. For high initial Pb concentrations, 20 and 60 microM Pb, precipitation of hydrocerussite and cerussite secondary phases dominates Pb partitioning. At 5 and 10 microM initial Pb, the sorption mechanism is dual in nature with persistence of the mononuclear adsorption complex combined with precipitation of a cerussite phase occurring prior to saturation of theoretically available surface sites. The formation of inner-sphere complexes implies strong metal interactions with the surface-the mechanistic reason for the affinity of Pb for calcite as observed in macroscopic studies. The geometry of the adsorbed complex can influence Pb coprecipitation, as a change to octahedral coordination is required for incorporation into calcite. The results provide the basis for predictions of Pb sequestration by calcite in natural systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.