Although increased time within specific phases correlates with decreases in the magnitude of upper extremity kinetics linked to overuse injuries, it also correlates with decreased ball speed. Based on these findings, it may appear that minimizing the risk of injury (ie, decreased kinetics) and maximizing performance quality (ie, increased ball speed) are incompatible with one another. However, there may be an optimal balance in timing that is effective for satisfying both outcomes.
Many cooperative social attributes are being linked to characteristics of mating systems, particularly to the rate of multiple paternity that typifies a population. Under the logic that greater offspring production by females should engender greater competition among males to mate with females, it is predicted that multiple paternity should increase with litter sizes. We tested the predicted positive association of multiple paternity and litter size with a meta-analysis of 59 species of mammals. The probability of multiple paternity and mean litter size were positively correlated, but not significantly ( Zr = 0.202). Also, the mean number of sires of litters increased with mean litter size, but not significantly ( Zr = 0.235). We developed a combinatorial formula for the influence of number of male mates and litter size on the probability of multiple paternity. We used Bayesian Markov chain Monte Carlo simulations to generate an expectation for the form of the relationship between the probability of multiple paternity and mean litter size. Under the assumption of random samplings of numbers of mates, the expected association of the probability of multiple paternity and mean litter sizes among species was positive, curvilinear and relatively high. However, the empirical probabilities of multiple paternities were much less than expected, suggesting that behavioural factors (such as mating-associated behaviours) or ecological characteristics (such as population density) probably limit the number of male mates for reproductive females. The probability of multiple paternity in a population is an estimate of mating patterns that does not closely reflect the number of sires of individual litters. We suggest use of the estimated probability of mating success for males as an alternative measure of their contribution to the mating system.
Energetic trade‐offs in resource allocation form the basis of life‐history theory, which predicts that reproductive allocation in a given season should negatively affect future reproduction or individual survival. We examined how allocation of resources differed between successful and unsuccessful breeding female Columbian ground squirrels to discern any effects of resource allocation on reproductive and somatic efforts. We compared the survival rates, subsequent reprodction, and mass gain of successful breeders (females that successfully weaned young) and unsuccessful breeders (females that failed to give birth or wean young) and investigated “carryover” effects to the next year. Starting capital was an important factor influencing whether successful reproduction was initiated or not, as females with the lowest spring emergence masses did not give birth to a litter in that year. Females that were successful and unsuccessful at breeding in one year, however, were equally likely to be successful breeders in the next year and at very similar litter sizes. Although successful and unsuccessful breeding females showed no difference in over winter survival, females that failed to wean a litter gained additional mass during the season when they failed. The next year, those females had increased energy “capital” in the spring, leading to larger litter sizes. Columbian ground squirrels appear to act as income breeders that also rely on stored capital to increase their propensity for future reproduction. Failed breeders in one year “prepare” for future reproduction by accumulating additional mass, which is “carried over” to the subsequent reproductive season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.