A number of longitudinal studies on aging have been designed to determine the predictors of healthy longevity, including the neuroprotective factors, however, relatively few studies included a wide range of factors and highlighted the challenges faced during data collection. Thus, the longitudinal study on neuroprotective model for healthy longevity (LRGS TUA) has been designed to prospectively investigate the magnitude of cognitive decline and its risk factors through a comprehensive multidimensional assessment comprising of biophysical health, auditory and visual function, nutrition and dietary pattern and psychosocial aspects. At baseline, subjects were interviewed for their status on sociodemographic, health, neuropsychological test, psychosocial and dietary intake. Subjects were also measured for anthropometric and physical function and fitness. Biospecimens including blood, buccal swap, hair and toenail were collected, processed and stored. A subsample was assessed for sensory function, i.e., vision and auditory. During follow-up, at 18 and 36 months, most of the measurements, along with morbidity and mortality outcomes will be collected. The description of mild cognitive impairment, successful aging and usual aging process is presented here. A total 2322 respondents were recruited in the data analysis at baseline. Most of the respondents were categorized as experiencing usual aging (73 %), followed by successful aging (11 %) and mild cognitive impairment (16 %). The LRGS TUA study is the most comprehensive longitudinal study on aging in Malaysia, and will contribute to the understanding of the aging process and factors associated with healthy aging and mental well-being of a multiethnic population in Malaysia.
Intermittent fasting (IF) refers to various dietary regimens that cycle between a period of non-fasting and a period of total fasting. This study aimed to determine the effects of IF on cognitive function among elderly individuals who practice IF who have mild cognitive impairment (MCI). A total of 99 elderly subjects with MCI of Malay ethnicity without any terminal illness were recruited from a larger cohort study, LRGS TUA. The subjects were divided into three groups, comprising those who were regularly practicing IF (r-IF), irregularly practicing IF (i-IF), and non-fasters (n-IF). Upon 36 months of follow-up, more MCI subjects in the r-IF group reverted to successful aging with no cognitive impairment and diseases (24.3%) compared to those in i-IF (14.2%) and n-IF groups (3.7%). The r-IF group’s subjects exhibited significant increment in superoxide dismutase (SOD) activity and reduction in body weight, levels of insulin, fasting blood glucose, malondialdehyde (MDA), C-reactive protein (CRP), and DNA damage. Moreover, metabolomics analysis showed that IF may modulate cognitive function via various metabolite pathways, including the synthesis and degradation of ketone bodies, butanoate metabolism, pyruvate metabolism, and glycolysis and gluconeogenesis pathways. Overall, the MCI-afflicted older adults who practiced IF regularly had better cognitive scores and reverted to better cognitive function at 36 months follow-up.
High levels of lead and copper can lead to increase in oxidative stress levels and are associated with DNA damage that eventually could be associated with cognitive decline.
Cognitive impairments are often related to aging and micronutrient deficiencies. Various essential micronutrients in the diet are involved in age-altered biological functions such as, zinc, copper, iron, and selenium that play pivotal roles either in maintaining and reinforcing the antioxidant performances or in affecting the complex network of genes (nutrigenomic approach) involved in encoding proteins for biological functions. Genomic stability is one of the leading causes of cognitive decline and deficiencies or excess in trace elements are two of the factors relating to it. In this review, we report and discuss the role of micronutrients in cognitive impairment in relation to genomic stability in an aging population. Telomere integrity will also be discussed in relation to aging and cognitive impairment, as well as, the micronutrients related to these events. This review will provide an understanding on how these three aspects can relate with each other and why it is important to keep a homeostasis of micronutrients in relation to healthy aging. Micronutrient deficiencies and aging process can lead to genomic instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.