Cannabinoid 1 receptor (CB1R) allosteric ligands hold far-reaching therapeutic promise. We report application of fluoro-and nitrogen-walk approaches to enhance the drug-like properties of GAT211, a prototype CB1R allosteric agonist-positive allosteric modulator (ago-PAM). Several analogs exhibited improved functional potency (cAMP, βarrestin2), metabolic stability, and aqueous solubility. Two key analogs, GAT591 (6r) and GAT593 (6s), exhibited augmented allosteric-agonist and PAM activities in neuronal cultures, improved metabolic stability, and enhanced orthosteric agonist binding (CP55,940). Both also exhibited good analgesic potency in the CFA inflammatory-pain model with longer duration of action over GAT211 while devoid of adverse cannabimimetic effects. Another analog, GAT592 (9j), exhibited moderate ago-PAM potency and improved aqueous solubility with therapeutic reduction of intraocular pressure in murine glaucoma models. The SAR findings and the enhanced allosteric activity in this class of allosteric modulators were accounted for in our recently developed computational model for CB1R allosteric activation and positive allosteric modulation.
Serotonergic
psychedelics are defined as compounds having serotonin
2A receptor (5-HT2AR) activation as an important pharmacological
mechanism. These compounds include the phenylalkylamine class, containing
substances with e.g. 2C-X structures (phenethylamines) or their N-methoxybenzyl analogues (NBOMes). Besides their abuse
potential, psychedelics are increasingly recognized for having therapeutic
benefits. However, many psychedelics remain incompletely characterized,
even concerning their structure–activity relationships. Here,
five positional isomers of 25H-NBOMe, with two methoxy groups on the
different positions of the phenyl ring of the phenethylamine moiety,
were subjected to split-nanoluciferase assays assessing the in vitro recruitment of cytosolic proteins to the 5-HT2AR. Furthermore, molecular docking at the 5-HT2AR allowed estimation of which residues interact with the specific
isomers’ methoxy groups. Although the optimal substitution
pattern of N-unsubstituted phenylalkylamines has
been extensively studied, this is the first comparative evaluation
of the functional effects of the positioning of the methoxy groups
in the phenethylamine moiety of NBOMes.
The first synthetic cannabinoid receptor agonists (SCRAs) were designed as tool compounds to study the endocannabinoid system’s two predominant cannabinoid receptors, CB1R and CB2R. Unfortunately, novel SCRAs now represent the most rapidly proliferating novel psychoactive substances (NPS) of abuse globally. Unlike ∆9-tetrahydrocannabinol, the CB1R and CB2R partial agonist and the intoxicating constituent of Cannabis, many SCRAs characterized to date are full agonists of CB1R. Gaining additional insight into the pharmacological activity of these SCRAs is critical to assess and regulate NPSs as they enter the marketplace. The purpose of this study was to assess select SCRAs recently identified by Canadian police, border service agency, private companies and the illicit market as potential CB1R and CB2R agonists. To this end, fifteen SCRAs were screened for in vitro activity and in silico interactions at CB1R and CB2R. Several SCRAs were identified as being highly biased for cAMP inhibition or βarrestin2 recruitment and receptor subtype selectivity between CB1R and CB2R. The indazole ring and halogen-substituted butyl or pentyl moieties were identified as two structural features that may direct βarrestin2 bias. Two highly-biased SCRAs—JWH-018 2′-napthyl-N-(3-methylbutyl) isomer (biased toward cAMP inhibition) and 4-fluoro MDMB-BINACA (biased toward βarrestin2 recruitment) displayed unique and differential in vivo activity in mice. These data provide initial insight into the correlations between structure, signalling bias, and in vivo activity of the SCRAs.
Summary:
Cannabinoids are compounds that are structurally and/or functionally related to the primary psychoactive constituent of Cannabis sativa, ∆9-tetrahydrocannabinol (THC). Cannabinoids can be divided into three broad categories: endogenous cannabinoids, plant-derived cannabinoids, and synthetic cannabinoids (SCs). Recently, there has been an unprecedented surge of interest into the pharmacological and medicinal properties of cannabinoids for the treatment of epilepsies. This surge has been stimulated by an ongoing shift in societal opinions about cannabinoid-based medicines and evidence that cannabidiol, a nonintoxicating plant cannabinoid, has demonstrable anticonvulsant activity in children with treatment-refractory epilepsy. The major receptors of the endogenous cannabinoid system (ECS)—the type 1 and 2 cannabinoid receptors (CB1R, CB2R)—have critical roles in the modulation of neurotransmitter release and inflammation, respectively; so, it is not surprising therefore that the ECS is being considered as a target for the treatment of epilepsy. SCs were developed as potential new drug candidates and tool compounds for studying the ECS. Beyond the plant cannabinoids, an extensive research effort is underway to determine whether SCs that directly target CB1R, CB2R, or the enzymes that breakdown endogenous cannabinoids have anticonvulsant effects in preclinical rodent models of epilepsy and seizure. This research demonstrates that many SCs do reduce seizure severity in rodent models and may have both positive and negative pharmacodynamic and pharmacokinetic interactions with clinically used antiepilepsy drugs. Here, we provide a comprehensive review of the preclinical evidence for and against SC modulation of seizure and discuss the important questions that need to be addressed in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.