Recycling light back into a plasma lamp's radiant zone can enhance its radiance. Measurements are reported for the effectiveness, spectral properties and modified plasma radiance maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultrabright Xenon short-arc discharge lamps, motivated by projection, biomedical and high-temperature furnace applications. For certain spectral windows and plasma arc regions, radiance can be heightened by up to 70%. However, the overall light recycling efficiency is reduced to about half this value due to lamp geometry. The manner in which light-plasma interactions affect light recycling efficacy is also elucidated.
Xenon short-arc discharge lamps exhibit ultrahigh radiance with substantial emission beyond the visible, primarily in the near infrared. Their radiance distributions are spatially and angularly inhomogeneous due to both the structure of the plasma arc and the infrared radiation from the electrodes. These characteristics are favorable for high-irradiance biomedical and high-temperature reactor applications that exploit both visible light and infrared radiation. For the affiliated optical designs, full-spectrum radiometry, rather than just visible photometry, is needed and not extensively available. We present experimental measurements for the spectral, spatial, and angular distributions of such 150 W lamps and relate the consequences for such novel applications.
The latest generations of ultra-bright Xenon short-arc discharge lamps have prodigious emissions outside the visible spectrum, primarily in the near infrared. Their brightness distributions are spatially and angularly inhomogeneous due to both the pronounced non-uniformities of the plasma arc and the substantial infrared radiation from the hot electrodes. These characteristics are fortuitously favorable for applications in photonic surgery, biomedical diagnostics, hightemperature chemical reactors and furnaces: cases where the full lamp spectrum is utilizable, and the key is reconstituting the spectral power density of the optimal regions of the lamp's plasma at a remote target. The associated optical systems must be tailored to lamp radiometric properties that are not extensively available and invariably are restricted to visible light due to their widespread use in projection systems. We present experimental measurements for the spectral, spatial and angular distributions of 150 W lamps of this genre, and relate to their ramifications for broadband high-flux applications.
The brightness of many lamps, and hence the attainable power density at the target application, can be enhanced by recycling light back into the lamp's radiant zone. We report measurements of the effectiveness, spectral characteristics and modified plasma brightness maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultra-bright Xenon short-arc discharge lamps. Lamp brightness can be increased by up to 70% for certain spectral windows and plasma arc regions. However, lamp geometry reduces overall light recycling effectiveness to about half this value. This study was motivated by biomedical and high-flux furnace applications where the full spectrum of lamp emissions can be exploited, heightened brightness allows a broader range of procedures, and the design of the affiliated optical systems is contingent upon how plasma radiometric characteristics are altered by photon regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.