Influenza continues to cause severe illness in millions and deaths in hundreds of thousands annually. Vaccines are used to prevent influenza outbreaks, however, the influenza virus mutates and annual vaccination is required for optimal protection. Vaccine effectiveness is also affected by other potential factors such as the human immune system, a mismatch with the chosen candidate virus, and egg adaptation associated with egg-based vaccine production. This article reviews the influenza vaccine development process and describes the implications of the changes to the cell-culture process and vaccine strain recommendations by the World Health Organization since the 2017 season. The traditional manufacturing process for influenza vaccines relies on fertilized chicken eggs that are used for vaccine production. Vaccines must be produced in large volumes and the complete process requires approximately 6 months for the egg-based process. In addition, egg adaptation of seed viruses occurs when viruses adapt to avian receptors found within eggs to allow for growth in eggs. These changes to key viral antigens may result in antigenic mismatch and thereby reduce vaccine effectiveness. By contrast, cell-derived seed viruses do not require fertilized eggs and eliminate the potential for egg-adapted changes. As a result, cell-culture technology improves the match between the vaccine virus strain and the vaccine selected strain, and has been associated with increased vaccine effectiveness during a predominantly H3N2 season. During the 2017–2018 influenza season, a small number of studies conducted in the United States compared the effectiveness of egg-based and cell-culture vaccines and are described here. These observational and retrospective studies demonstrate that inactivated cell-culture vaccines were more effective than egg-based vaccines. Adoption of cell-culture technology for influenza vaccine manufacturing has been reported to improve manufacturing efficiency and the additional benefit of improving vaccine effectiveness is a key factor for future policy making considerations.
Bivalent rLP2086 (Trumenba), a vaccine for prevention of Neisseria men-ingitidis serogroup B (NmB) disease, was licensed for use in adolescents and young adults after it was demonstrated that it elicits antibodies that initiate complement-mediated killing of invasive NmB isolates in a serum bactericidal assay with human complement (hSBA). The vaccine consists of two factor H binding proteins (fHBPs) representing divergent subfamilies to ensure broad coverage. Although it is the sur-rogate of efficacy, an hSBA is not suitable for testing large numbers of strains in local laboratories. Previously, an association between the in vitro fHBP surface expression level and the susceptibility of NmB isolates to killing was observed. Therefore, a flow cytometric meningococcal antigen surface expression (MEASURE) assay was developed and validated by using an antibody that binds to all fHBP variants from both fHBP subfamilies and accurately quantitates the level of fHBP expressed on the cell surface of NmB isolates with mean fluorescence intensity as the readout. Two collections of invasive NmB isolates (n 1,814, n 109) were evaluated in the assay , with the smaller set also tested in hSBAs using individual and pooled human serum samples from young adults vaccinated with bivalent rLP2086. From these data, an analysis based on fHBP variant prevalence in the larger 1,814-isolate set showed that 91% of all meningococcal serogroup B isolates expressed sufficient levels of fHBP to be susceptible to bactericidal killing by vaccine-induced antibodies. IMPORTANCE Bivalent rLP2086 (Trumenba) vaccine, composed of two factor H binding proteins (fHBPs), was recently licensed for the prevention of N. meningitidis serogroup B (NmB) disease in individuals 10 to 25 years old in the United States. This study evaluated a large collection of NmB isolates from the United States and Europe by using a flow cytometric MEASURE assay to quantitate the surface expression of the vaccine antigen fHBP. We find that expression levels and the proportion of strains above the level associated with susceptibility in an hSBA are generally consistent across these geographic regions. Thus, the assay can be used to predict which NmB isolates are susceptible to killing in the hSBA and therefore is able to
Invasive meningococcal disease caused by Neisseria meningitidis presents a significant public health concern. Meningococcal disease is rare but potentially fatal within 24 hours of onset of illness, and survivors may experience permanent sequelae. This review presents the epidemiology, incidence, and outbreak data for invasive meningococcal disease in the United States since 1970, and it highlights recent changes in vaccine recommendations to prevent meningococcal disease. Relevant publications were obtained by database searches for articles published between January 1970 and July 2015. The incidence of meningococcal disease has decreased in the United States since 1970, but serogroup B meningococcal disease is responsible for an increasing proportion of disease burden in young adults. Recent serogroup B outbreaks on college campuses warrant broader age-based recommendations for meningococcal group B vaccines, similar to the currently recommended quadrivalent vaccine that protects against serogroups A, C, W, and Y. After the recent approval of two serogroup B vaccines, the Advisory Committee on Immunization Practices first updated its recommendations for routine meningococcal vaccination to cover at-risk populations, including those at risk during serogroup B outbreaks, and later it issued a recommendation for those aged 16-23 years. Meningococcal disease outbreaks remain challenging to predict, making the optimal disease management strategy one of prevention through vaccination rather than containment. How the epidemiology of serogroup B disease and prevention of outbreaks will be affected by the new category B recommendation for serogroup B vaccines remains to be seen.
BackgroundAcinetobacter infections, especially multidrug-resistant (MDR) Acinetobacter infections, are a global health problem. This study aimed to describe clinical outcomes in patients with confirmed Acinetobacter spp. isolates who were treated with tigecycline in randomized clinical trials.Materials and methodsData from 14 multinational, randomized (open-label or double-blind), and active-controlled (except one) Phase III and IV studies were analyzed using descriptive statistics.ResultsA total of 174 microbiologically evaluable patients with Acinetobacter spp. infections (including MDR infections) were identified, and 95 received tigecycline to treat community-acquired pneumonia (CAP), diabetic foot infections (DFIs), hospital-acquired pneumonia (HAP), complicated intra-abdominal infections (cIAIs), infections with resistant pathogens (RPs), or complicated skin and skin-structure infections. The rate of cure of tigecycline for most indications was 70%–80%, with the highest (88.2%) in cIAIs. The rate of cure of the comparators was generally higher than tigecycline, but within each indication the 95% CIs for clinical cure for each treatment group overlapped. For most Acinetobacter isolates, the minimum inhibitory concentration of tigecycline was 0.12–2 μg/mL, with seven at 4 μg/mL and one at 8 μg/mL. The cure rate by tigecycline was 50% (95% CI 12.5%–87.5% in CAP) to 88.2% (95% CI 66.2%–97.1% in cIAIs) for all Acinetobacter, and 72.7% (95% CI 54.5%–93.2% in HAP) to 100% (95% CI 25%–100.0% in cIAIs) for MDR Acinetobacter. For the comparators, it was 83.8% (95% CI 62.8%–95.9% in HAP) to 100% (95% CI 75%–100% in cIAIs and 25%–100.0% in RPs) and 88% (95% CI 66%–97% in HAP) to 100% (95% CI 25%–100% in cIAIs and 75%–100% in DFIs), respectively.ConclusionThese findings suggest that with appropriate monitoring, tigecycline may be a useful consideration for Acinetobacter infections alone or in combination with other anti-infective agents when other therapies are not suitable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.