We introduce the AusTraits database - a compilation of measurements of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 375 traits across 29230 taxa from field campaigns, published literature, taxonomic monographs, and individual taxa descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological parameters (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual-, species- and genus-level observations coupled to, where available, contextual information on site properties. This data descriptor provides information on version 2.1.0 of AusTraits which contains data for 937243 trait-by-taxa combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data to increase our collective understanding of the Australian flora.
We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
Large urban trees have many benefits. However, falling branches pose a serious hazard to both people and infrastructure. In several tree species, aerial roots grow down from branches to the ground. These roots are capable of thickening to support the branches, lessening the risk of tree failure. Unfortunately, in urban environments most aerial roots die before reaching the ground. Here, we report a new method for encouraging aerial roots to reach the ground, developed by the second-year botany class at UNSW Sydney. Our class tested three experimental treatments on aerial roots of Ficus rubiginosa Desf. ex Vent. (Port Jackson Fig)—PVC pipes filled with sphagnum moss, PVC pipes filled with potting mix, and PVC pipes filled with sphagnum moss and topped with funnels to catch extra rainwater. All three treatments significantly improved aerial root growth, with 26 of the 30 (87%) treatment roots reaching the ground after one year compared to 0 of the 10 control roots. Our method was successful for roots up to 3 m above the ground, suggesting the potential growth rate of aerial roots is substantial when conditions are favourable. Our novel approach is an attractive and cost-effective alternative to slings and other artificial supports. This project is an example of using undergraduate practical classes to teach science while simultaneously addressing important real-world problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.