Plant disease is an on-going challenge for the farmers and it has been one of the major threats to the income and the food security. This project is used to classify plant leaf into diseased and healthy leaf,to improve the quality and quantity of agricultural production in the country. The innovative technology that helps in improve the quality and quantity in the agricultural field is the smart farming system. It represented the modern method that provides cost-effective disease detection and deep learning with convolutional neural networks (CNNs) has achieved large successfulness in the categorisation of different plant leaf diseases. CNN reads a really very larger picture in a simple way. CNN nearly utilised to examine visual imagery and are frequently working behind the scenes in image classification. To extract the general features and then classify them under multiple based upon the features detected. This project will help the farmers financially in increasing the production of the crop yield as well as the overall agricultural production. The paper reviews the expected methods of plant leaf disease detection system that facilitates the advancement in agriculture. It includes various phases such as image preprocessing, image classification, feature extraction and detecting healthy or diseased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.