The present data provide further indications that increased MDM2 expression level, caused by gene amplification or altered regulation of transcription, is involved in tumor progression of some, but not all, sarcoma subtypes.
BackgroundSpermatozoal DNA damage is associated with poor sperm quality, disturbed embryonic development and early embryonic loss, and some genetic diseases originate from paternal de novo mutations. We previously reported poor repair of bulky DNA-lesions in rodent testicular cells.Methodology/Principal FindingsWe studied the fate of DNA lesions in the male germ line. B[a]PDE-N2-dG adducts were determined by liquid chromatography-tandem mass spectrometry, and de novo mutations were measured in the cII-transgene, in Big Blue®mice exposed to benzo[a]pyrene (B[a]P; 3×50 mg/kg bw, i.p.). Spermatozoa were harvested at various time-points following exposure, to study the consequences of exposure during the different stages of spermatogenesis. B[a]PDE-N2-dG adducts induced by exposure of spermatocytes or later stages of spermatogenesis persisted at high levels in the resulting spermatozoa. Spermatozoa originating from exposed spermatogonia did not contain DNA adducts; however de novo mutations had been induced (p = 0.029), specifically GC-TA transversions, characteristic of B[a]P mutagenesis. Moreover, a specific spectrum of spontaneous mutations was consistently observed in spermatozoa.Conclusions/SignificanceA temporal pattern of genotoxic consequences following exposure was identified, with an initial increase in DNA adduct levels in spermatozoa, believed to influence fertility, followed by induction of germ line de novo mutations with possible consequences for the offspring.
A coordinated study was carried out on the development, evaluation and application of biomonitoring procedures for populations exposed to environmental genotoxic pollutants. The procedures used involved both direct measurement of DNA or protein damage (adducts) and assessment of second biological effects (mutation and cytogenetic damage). Adduct detection at the level of DNA or protein (haemoglobin) was carried out by 32P-postlabelling, immunochemical, HPLC or mass spectrometric methods. Urinary excretion products resulting from DNA damage were also estimated (immunochemical assay, mass spectrometry). The measurement of adducts was focused on those from genotoxicants that result from petrochemical combustion or processing, e.g. low-molecular-weight alkylating agents, PAHs and compounds that cause oxidative DNA damage. Cytogenetic analysis of lymphocytes was undertaken (micronuclei, chromosome aberrations and sister chromatid exchanges) and mutation frequency was estimated at a number of loci including the hprt gene and genes involving in cancer development. Blood and urine samples from individuals exposed to urban pollution were collected. Populations exposed through occupational or medical sources to larger amounts of some of the genotoxic compounds present in the environmental samples were used as positive controls for the environmentally exposed population. Samples from rural areas were used as negative controls. The project has led to new, more sensitive and more selective approaches for detecting carcinogen-induced damage to DNA and proteins, and subsequent biological effects. These methods were validated with the occupational exposures, which showed evidence of DNA and/or protein and/or chromosome damage in workers in a coke oven plant, garage workers exposed to diesel exhaust and workers exposed to ethylene oxide in a sterilization plant. Dose reponse and adduct repair were studied for methylated adducts in patients treated with methylating cytostatic drugs. The biomonitoring methods have also demonstrated their potential for detecting environmental exposure to genotoxic compounds in nine groups of non-smoking individuals, 32P-postlabelling of DNA adducts being shown to have the greatest sensitivity.
(SEM 0.296), respectively) than in the winter samples (3.06 fmol adducts/pg albumin (SEM 0.187) and 3.04 fmol adducts/Ig albumin (SEM 0.184), respectively) even though the air measurements showed higher concentrations of PAHs in the winter. The statistical analysis did not show any effects of air exposures on concentrations of BPDE-albumin adduct. Conclusions-A multiple regression analysis of the measured concentrations of BPDE-albumin adducts for all the groups, during both seasons, indicates that occupational exposures do not contribute significantly to the formation of adducts. In general, the concentrations of albumin adducts found vary within relatively small limits for the two seasons and between the various groups of participants. No extreme differences were found. (Occup Environ Med 1997;54:662-666)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.