This study analyzes drought characteristics in the Awash River Basin of Ethiopia based on meteorological and hydrological variables. Standardized precipitation index is used for temporal and spatial analyses of meteorological drought and the theory of runs is used to define hydrological drought by considering streamflow as the drought indicator. Drought severity maps are generated using Arc View/GIS by summarizing the percentage of occurrence of droughts in areas within the study basin. Extreme drought category on 12-month time scale indicated that extreme events occur most frequently in the Upper and Middle Awash Basin. However, while considering the overall categories of drought, the most frequent droughts occurred in the Middle and Lower Awash Basin during the period of analysis. Similarly, results based on hydrological drought analysis shows that the severest drought events occurred in the Middle
Abstract. Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma transformation, is applied to improve the frequency and amount of raw GCM precipitation at the grid nodes. Spatial disaggregation model parameters (β, σ 2 ), based on multiplicative random cascade theory, are estimated using Mandelbrot-Kahane-Peyriere (MKP) function at q=1 for each month. Bias-correction method exhibits ability of reducing biases from the frequency and amount when compared with the computed frequency and amount at grid nodes based on spatially interpolated observed rainfall data. Spatial disaggregation model satisfactorily reproduces the observed trend and variation of average rainfall amount except during heavy rainfall events with certain degree of spatial and temporal variations. Finally, the hydrologic model, HEC-HMS, is applied to simulate the observed runoff for upper Ping River Basin based on the modified GCM precipitation scenarios and the raw GCM precipitation. Precipitation scenario developed with bias-correction and disaggregation provides an improved reproduction of basin level runoff observations.
The present study develops a simple interactive integrated water allocation model (IWAM), which can assist the planners and decision makers in optimal allocation of limited water from a storage reservoir to different user sectors, considering socio-economic, environmental and technical aspects. IWAM comprises three modules-a reservoir operation module (ROM), an economic analysis module (EAM) and a water allocation module (WAM). The model can optimize the water allocation with any of two different objectives or two objectives together. The two individual objectives included in the model are the maximization of satisfaction and the maximization of net economic benefit by the demand sectors. Weighting technique (WT) or simultaneous compromise constraint (SICCON) technique is used to convert the multi-objective decision-making problem into a single objective function. The single objective functions are optimized using linear programming. The model applicability is demonstrated for various cases with a hypothetical example.
Acute respiratory distress syndrome (ARDS) is the main cause for the COVID-19 infection-related morbidity and mortality. Recent clinical evidences suggest increased level of cytokines and chemokines targeting lung tissue as a prominent etiological factor. The immunomodulatory effect of mesenchymal stem cells (MSCs) as the alternative therapy for the treatment of inflammatory and autoimmune diseases is well known. Several studies have also revealed that similar therapeutic impacts of parent MSCs are also exhibited by MSCs-derived extracellular vesicles (EVs) including exosomes. In this review, we explored the therapeutic potential of both MSCs and exosomes in mitigating the COVID-19 induced cytokine storm as well as promoting the regeneration of alveolar tissue, attributed to the intrinsic cytokines and growth factor present in the secretome. The preliminary studies have demonstrated the safety and efficacy of MSCs and exosomes in mitigating symptoms associated with COVID-19. Thus, they can be used on compassionate basis, owing to their ability to endogenously repair and decrease the inflammatory reactions involved in the morbidity and mortality of COVID-19. However, more preclinical and clinical studies are warranted to understand their mechanism of action and further establish their safety and efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.