Classification of malignant and benign pulmonary nodules is important for further treatment plan. The present work focuses on the classification of benign and malignant pulmonary nodules using support vector machine. The pulmonary nodules are segmented using a semi-automated technique, which requires only a seed point from the end user. Several shape-based, margin-based, and texture-based features are computed to represent the pulmonary nodules. A set of relevant features is determined for the efficient representation of nodules in the feature space. The proposed classification scheme is validated on a data set of 891 nodules of Lung Image Database Consortium and Image Database Resource Initiative public database. The proposed classification scheme is evaluated for three configurations such as configuration 1 (composite rank of malignancy "1" and "2" as benign and "4" and "5" as malignant), configuration 2 (composite rank of malignancy "1","2", and "3" as benign and "4" and "5" as malignant), and configuration 3 (composite rank of malignancy "1" and "2" as benign and "3","4" and "5" as malignant). The performance of the classification is evaluated in terms of area (A z) under the receiver operating characteristic curve. The A z achieved by the proposed method for configuration-1, configuration-2, and configuration-3 are 0.9505, 0.8822, and 0.8488, respectively. The proposed method outperforms the most recent technique, which depends on the manual segmentation of pulmonary nodules by a trained radiologist.
Visual information of similar nodules could assist the budding radiologists in self-learning. This paper presents a content-based image retrieval (CBIR) system for pulmonary nodules, observed in lung CT images. The reported CBIR systems of pulmonary nodules cannot be put into practice as radiologists need to draw the boundary of nodules during query formation and feature database creation. In the proposed retrieval system, the pulmonary nodules are segmented using a semi-automated technique, which requires a seed point on the nodule from the end-user. The involvement of radiologists in feature database creation is also reduced, as only a seed point is expected from radiologists instead of manual delineation of the boundary of the nodules. The performance of the retrieval system depends on the accuracy of the segmentation technique. Several 3D features are explored to improve the performance of the proposed retrieval system. A set of relevant shape and texture features are considered for efficient representation of the nodules in the feature space. The proposed CBIR system is evaluated for three configurations such as configuration-1 (composite rank of malignancy "1","2" as benign and "4","5" as malignant), configuration-2 (composite rank of malignancy "1","2", "3" as benign and "4","5" as malignant), and configuration-3 (composite rank of malignancy "1","2" as benign and "3","4","5" as malignant). Considering top 5 retrieved nodules and Euclidean distance metric, the precision achieved by the proposed method for configuration-1, configuration-2, and configuration-3 are 82.14, 75.91, and 74.27 %, respectively. The performance of the proposed CBIR system is close to the most recent technique, which is dependent on radiologists for manual segmentation of nodules. A computer-aided diagnosis (CAD) system is also developed based on CBIR paradigm. Performance of the proposed CBIR-based CAD system is close to performance of the CAD system using support vector machine.
The prior works of computation of spiculation, lobulation, and sphericity require a set of four ground truths from radiologists and, hence, can not be used in practice. The proposed methods do not require ground truth information of nodules from radiologists, and hence, it can be used in real-life computer-aided diagnosis system for lung cancer.
One of the hallmarks of cancers is their ability to develop resistance against therapeutic agents. Therefore, developing effective in vitro strategies to identify drug resistance remains of paramount importance for successful treatment. One of the ways cancer cells achieve drug resistance is through the expression of efflux pumps that actively pump drugs out of the cells. To date, several studies have investigated the potential of using 3-dimensional (3D) multicellular tumor spheroids (MCSs) to assess drug resistance; however, a unified system that uses MCSs to differentiate between multi drug resistance (MDR) and non-MDR cells does not yet exist. In the present report we describe MCSs obtained from post-diagnosed, pre-treated patient-derived (PTPD) cell lines from head and neck squamous cancer cells (HNSCC) that often develop resistance to therapy. We employed an integrated approach combining response to clinical drugs and screening cytotoxicity, monitoring real-time drug uptake, and assessing transporter activity using flow cytometry in the presence and absence of their respective specific inhibitors. The report shows a comparative response to MDR, drug efflux capability and reactive oxygen species (ROS) activity to assess the resistance profile of PTPD MCSs and two-dimensional (2D) monolayer cultures of the same set of cell lines. We show that MCSs provide a robust and reliable in vitro model to evaluate clinical relevance. Our proposed strategy can also be clinically applicable for profiling drug resistance in cancers with unknown resistance profiles, which consequently can indicate benefit from downstream therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.