The dendritic arbor of pyramidal neurons is not a monolithic structure. We show here that the excitability of terminal apical dendrites differs from that of the apical trunk. In response to fluorescence-guided focal photolysis of caged glutamate, individual terminal apical dendrites generated cadmium-sensitive all-or-none responses that were subthreshold for somatic action potentials. Calcium transients produced by all-or-none responses were not restricted to the sites of photolysis, but occurred throughout individual distal dendritic compartments, indicating that electrogenesis is mediated primarily by voltage-gated calcium channels. Compartmentalized and binary behavior of parallel-connected terminal dendrites can greatly expand the computational power of a single neuron.
Long-term increases in the strength of excitatory transmission at Schaffer collateral-CA1 cell synapses of the hippocampus require the insertion of new ␣-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) into the synapse, but the kinetics of this process are not well established. Using microphotolysis of caged glutamate to activate receptors at single dendritic spines in hippocampal CA1 cells, we report the long-lasting potentiation of AMPAR-mediated currents with only a single pairing of photoreleased glutamate and brief postsynaptic depolarization. This potentiation was N-methyl-D-aspartate receptor (NMDAR)-dependent and was reversed with low-frequency photostimulation in an NMDAR-dependent manner, suggesting that it is mediated by the same mechanism(s) as conventional synaptic long-term potentiation. Potentiation of photolytic responses developed rapidly in a stepwise manner after a brief and variable delay (<60 s) at spines, but could not be induced at extrasynaptic sites on the dendritic shaft. Potentiation was accompanied by a concomitant decrease in postsynaptic, polyamine-dependent paired-pulse facilitation of the photolytic currents, indicating that a change in the subunit composition of the AMPARs underlying the response contributed to the potentiation. These changes are consistent with an increase in the proportion of GluR2-containing AMPARs in the spine head. These results demonstrate that activation of postsynaptic glutamate receptors by glutamate is not only necessary, but sufficient, for the induction of NMDAR-dependent long-term potentiation and reveal additional aspects of its expression.synaptic plasticity ͉ hippocampus ͉ plasticity L ong-term plasticity of excitatory synaptic transmission that depends on N-methyl-D-aspartate receptor (NMDAR) activation is likely to underlie learning and memory formation (1, 2). Despite an abundance of knowledge about long-term potentiation (LTP), considerable uncertainty and controversy about the mechanisms of LTP induction and expression persist. Some of these controversies are likely to stem from the use of conventional synaptic stimulation for studying LTP because the presynaptic nerve terminal is an unreliable source of glutamate. For example, several previous attempts to induce LTP with exogenous glutamate have not been successful (3, 4), raising the possibility that there is a factor other than glutamate that is coreleased from nerve terminals with synaptic stimulation and is required for LTP induction. Likewise, changes in paired-pulse ratio (PPR) have been reported to accompany LTP in some studies and have been interpreted as evidence of a change in presynaptic release probability (5, 6). Matsuzaki et al. (7) have demonstrated that potentiation of glutamate responses can be achieved with repeated photorelease from caged glutamate targeted to dendritic spines, suggesting that activation of synaptic glutamate receptors is critical.The ability to study LTP with exogenous glutamate offers a powerful tool for answering fundamental questions...
Traumatic injury to the CNS results in chronic partial deafferentation of subsets of surviving neurons. Such injuries are often followed by a delayed but long-lasting period of aberrant hyperexcitability. The cellular mechanisms underlying this delayed hyperexcitability are poorly understood. We developed an in vitro model of deafferentation and reactive hyperexcitability using organotypic hippocampal slice cultures to study the underlying cellular mechanisms. One week after transection of the Schaffer collateral and temporoammonic afferents to CA1 neurons, brief tetanic stimulation of the residual excitatory synapses produced abnormally prolonged depolarizations, compared with responses in normally innervated neurons. Responses to weak stimulation, in contrast, were unaffected after deafferentation. Direct stimulation of distal apical dendrites using focal photolysis of caged glutamate triggered abnormally prolonged plateau potentials in the deafferented neurons when strong stimulation was given, but responses to weak stimulation were not different from controls. An identical phenotype was produced by chronic "chemical deafferentation" with glutamate receptor antagonists. Responses to strong synaptic and photolytic stimulation were selectively prolonged by small-conductance (SK-type) calcium-activated potassium channel blockers in normally innervated cells but not after deafferentation. No significant changes in SK2 mRNA or protein levels, GABAergic inhibition, glutamate receptor function, input resistance, or action potential parameters were observed after chronic deafferentation. We suggest that a posttranslational downregulation of SK channel function in thin distal dendrites is a significant contributor to deafferentation-induced reactive hyperexcitability.
GluA2-lacking, calcium-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) have unique properties, but their presence at excitatory synapses in pyramidal cells is controversial. We have tested certain predictions of the model that such receptors are present in CA1 cells and show here that the polyamine spermine, but not philanthotoxin, causes use-dependent inhibition of synaptically evoked excitatory responses in stratum radiatum, but not s. oriens, in cultured and acute hippocampal slices. Stimulation of single dendritic spines by photolytic release of caged glutamate induced an N-methyl-d-aspartate receptor-independent, use- and spermine-sensitive calcium influx only at apical spines in cultured slices. Bath application of glutamate also triggered a spermine-sensitive influx of cobalt into CA1 cell dendrites in s. radiatum. Responses of single apical, but not basal, spines to photostimulation displayed prominent paired-pulse facilitation (PPF) consistent with use-dependent relief of cytoplasmic polyamine block. Responses at apical dendrites were diminished, and PPF was increased, by spermine. Intracellular application of pep2m, which inhibits recycling of GluA2-containing AMPARs, reduced apical spine responses and increased PPF. We conclude that some calcium-permeable, polyamine-sensitive AMPARs, perhaps lacking GluA2 subunits, are present at synapses on apical dendrites of CA1 pyramidal cells, which may allow distinct forms of synaptic plasticity and computation at different sets of excitatory inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.