For the first time, the pressure and temperature dependence of a chemical reaction at the solid/solution interface is studied by scanning tunneling microscopy (STM), and thermodynamic data are derived. In particular, the STM is used to study the reversible binding of O(2) with cobalt(II) octaethylporphyrin (CoOEP) supported on highly oriented pyrolytic graphite (HOPG) at the phenyloctane/CoOEP/HOPG interface. The adsorption is shown to follow the Langmuir isotherm with P(1/2)(298K) = 3200 Torr. Over the temperature range of 10-40 °C, it was found that ΔH(P) = -68 ± 10 kJ/mol and ΔS(P) = -297 ± 30 J/(mol K). The enthalpy and entropy changes are slightly larger than expected based on solution-phase reactions, and possible origins of these differences are discussed. The big surprise here is the presence of any O(2) binding at room temperature, since CoOEP is not expected to bind O(2) in fluid solution. The stability of the bound oxygen is attributed to charge donation from the graphite substrate to the cobalt, thereby stabilizing the polarized Co-O(2) bonding. We report the surface unit cell for CoOEP on HOPG in phenyloctane at 25 °C to be A = (1.46 ± 0.1)n nm, B = (1.36 ± 0.1)m nm, and α = 54 ± 3°, where n and m are unknown nonzero non-negative integers.
Scanning tunneling microscopy was used to make the first molecular scale measurements of the temperature dependence of composition of an adlayer at the solution-solid interface. We conclusively demonstrate that metal porphyrins adsorb very strongly on Au(111) at the solution solid interface such that the monolayer composition is entirely kinetically controlled below about 100 °C. The barrier for desorption is so great in fact that a temperature of 135 °C is required to induce desorption over a period of hours. Moreover, cobalt(II) octaethylporphyrin (CoOEP) and NiOEP desorb at different rates from different sites on the surface. We have measured the rate constant for desorption of CoOEP into phenyloctane to be 6.7 × 10(-5)/s at 135 °C. On the basis of these measurements, an upper bound can be set for the desorption rate of NiOEP into phenyloctane as 6.7 × 10(-4)/s at 135 °C. For solutions of the order of 100 μM in NiOEP or CoOEP, a dense monolayer is formed within seconds, and the adsorption rate constants fall within 40% of each other. The structures of NiOEP and CoOEP monolayers are essentially identical, and the molecular spacing for both can be described by A = 1.42 ± 0.02 nm, B = 1.32 ± 0.02 nm, and α = 57° ± 2°. The solubility of CoOEP and NiOEP in phenyloctane at room temperature was measured to be 0.228 and 0.319 g/L, respectively.
Tip-enhanced Raman scattering (TERS) from plasmonic silver nanoparticles traces spatial variations in optical fields defined by the interaction of the plasmonic probe with nanoscale topographic features that are characteristic of crystalline particles. This is demonstrated through correlated atomic force microscopy (AFM)−TERS imaging of ∼100 nm silver nanoparticles coated with 4-mercaptobenzonitrile (MBN) molecules. In effect, the recorded spectral images are sensitive to the 3D topographic makeup of the particle and broadcast local optical fields that vary over a few nanometers of length scale.
Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric fields on the nanoscale. This is illustrated through ambient TERS measurements recorded using silver atomic force microscope tips coated with 4-mercaptobenzonitrile molecules and used to image step edges on an Au(111) surface. The observed two-dimensional TERS images uniquely map electric fields localized at Au(111) step edges following 671 nm excitation. We establish that our measurements are not only sensitive to spatial variations in the enhanced electric fields but also to their vector components. We also experimentally demonstrate that (i) few nanometer precision is attainable in TERS nanoscopy using corrugated tips with nominal radii on the order of 100-200 nm, and (ii) TERS signals do not necessarily exhibit the expected E dependence. Overall, we illustrate the concept of electric field imaging via TERS and establish the connections between our observations and conventional TERS chemical imaging measurements.
Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric field variations with extremely high spatial resolution under ambient conditions. This is illustrated through TERS images recorded using a silver atomic force microscope tip coated with strategically selected molecular reporters and used to image a sputtered silver film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.