The study of Nuclear Matrix (NuMat) over the last 40 years has been limited to either isolated nuclei from tissues or cells grown in culture. Here, we provide a protocol for NuMat preparation in intact Drosophila melanogaster embryos and its use in dissecting the components of nuclear architecture. The protocol does not require isolation of nuclei and therefore maintains the three-dimensional milieu of an intact embryo, which is biologically more relevant compared to cells in culture. One of the advantages of this protocol is that only a small number of embryos are required. The protocol can be extended to larval tissues like salivary glands and imaginal discs with little modification. Taken together, it becomes possible to carry out such studies in parallel to genetic experiments using mutant and transgenic flies. This protocol, therefore, opens the powerful field of fly genetics to cell biology in the study of nuclear architecture.
Nuclear Matrix (NuMat) is the fraction of the eukaryotic nucleus insoluble to detergents and high-salt extractions that manifests as a pan-nuclear fiber-granule network. NuMat consists of ribonucleoprotein complexes, members of crucial nuclear functional modules, and DNA fragments. Although NuMat captures the organization of non-chromatin nuclear space, very little is known about components organization within NuMat. To understand the organization of NuMat components, we subfractionated it with increasing concentrations of the chaotrope Guanidinium Hydrochloride (GdnHCl) and analyzed the proteomic makeup of the fractions. We observe that the solubilization of proteins at different concentrations of GdnHCl is finite and independent of the broad biophysical properties of the protein sequences. Looking at the extraction pattern of the Nuclear Envelope and Nuclear Pore Complex, we surmise that this fractionation represents easily-solubilized/loosely-bound and difficultly-solubilized/tightly-bound components of NuMat. Microscopic analyses of the localization of key NuMat proteins across sequential GdnHCl extractions of in situ NuMat further elaborate on the divergent extraction patterns. Furthermore, we solubilized NuMat in 8M GdnHCl and upon removal of GdnHCl through dialysis, en masse renaturation leads to RNA-dependent self-assembly of fibrous structures. The major proteome component of the self-assembled fibers comes from the difficultly-solubilized, tightly-bound component. This fractionation of the NuMat reveals different organizational levels within it which may reflect the structural and functional organization of nuclear architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.