Data quality is a central issue for many information-oriented organizations. Recent advances in the data quality field reflect the view that a database is the product of a manufacturing process. While routine errors, such as non-existent zip codes, can be detected and corrected using traditional data cleansing tools, many errors systemic to the manufacturing process cannot be addressed. Therefore, the product of the data manufacturing process is an imprecise recording of information about the entities of interest (i.e. customers, transactions or assets). In this way, the database is only one (flawed) version of the entities it is supposed to represent. Quality assurance systems such as Motorola's SixSigma and other continuous improvement methods document the data manufacturing process's shortcomings. A widespread method of documentation is quality matrices. In this paper, we explore the use of the readily available data quality matrices for the data mining classification task. We first illustrate that if we do not factor in these quality matrices, then our results for prediction are sub-optimal. We then suggest a general-purpose ensemble approach that perturbs the data according to these quality matrices to improve the predictive accuracy and show the improvement is due to a reduction in variance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.