Terrain, representing features of an earth surface, plays a crucial role in many applications such as simulations, route planning, analysis of surface dynamics, computer graphics-based games, entertainment, films, to name a few. With recent advancements in digital technology, these applications demand the presence of high resolution details in the terrain. In this paper, we propose a novel fully convolutional neural network based super-resolution architecture to increase the resolution of low-resolution Digital Elevation Model (LRDEM) with the help of information extracted from the corresponding aerial image as a complementary modality. We perform the super-resolution of LRDEM using an attention based feedback mechanism named 'Attentional Feedback Network' (AFN), which selectively fuses the information from LRDEM and aerial image to enhance and infuse the high-frequency features and to produce the terrain realistically . We compare the proposed architecture with existing state-of-the-art DEM super-resolution methods and show that the proposed architecture outperforms enhancing the resolution of input LRDEM accurately and in a realistic manner. 12
High resolution Digital Elevation Models(DEMs) are an important requirement for many applications like modelling water flow, landslides, avalanches etc. Yet publicly available DEMs have low resolution for most parts of the world. Despite tremendous success in image super resolution task using deep learning solutions, there are very few works that have used these powerful systems on DEMs to generate HRDEMs. Motivated from feedback neural networks, we propose a novel neural network architecture that learns to add high frequency details iteratively to low resolution DEM, turning it into a high resolution DEM without compromising its fidelity. Our experiments confirm that without any additional modality such as aerial images(RGB), our network DSRFB achieves RMSEs of 0.59 to 1.27 across 4 different datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.