The recent dramatic enhancement in the cancer-related mortality and drawbacks (side effects and resistance) of Pt-based first-generation chemotherapeutics have escalated the need for new cancer medicines with unique anticancer activities...
Photodynamic therapy (PDT), a non‐/minimally invasive cancer treatment method, has the advantages of low side effects, high selectivity, and low drug resistance. It is currently a popular cancer treatment method. However, given the shortcomings of photosensitizers such as poor photostability, poor water solubility, and short half‐life in vivo when used alone, the development of photosensitizer nano‐delivery platforms has always been a research hotspot to overcome these shortcomings. In the human body, various types of cells generally release bilayer extracellular vesicles known as exosomes. Compared with traditional materials, exosomes are currently an ideal drug delivery platform due to their homology, low immunogenicity, easy modification, high biocompatibility, and natural carrying capacity. Therefore, in this concept, we focus on the research status and prospects of engineered exosome‐based photosensitizer nano‐delivery platforms in cancer PDT.
Photodynamic therapy (PDT) for cancer treatment has garnered tremendous attention with its promising non‐invasiveness, low side effects, and spatiotemporal selectivity. However, the hypoxic microenvironment in solid tumours remains a serious resistant factor to reducing the effects of PDT. Endoperoxides are successfully utilized as the chemical storage or supplier of singlet oxygen (1O2), the active substance for PDT in materials and other domains. Recent reports indicated that this type of compound could remarkably enhance the therapeutic effects of PDT under hypoxia. This concept mainly introduces a few representative endoperoxides and the outlook of their potent application for treating hypoxic cancer cells.
Recently, interest has been given to developing photocatalytic anticancer drugs. This area of research is dominated by metal complexes. Here, we report the potential of lysosome/mitochondria targeting cyanine appended bipyridine compounds as the organic photocatalytic anticancer agents. The organocatalyst (bpyPCN) not only exhibits light-induced NADH oxidation but also generates intracellular ROS to demonstrate anticancer activity. This is the first example of organic compound induced catalytic NADH photo-oxidation in an aqueous solution and in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.