The repeatability and reproducibility of radiomic features extracted from CT scans need to be investigated to evaluate the temporal stability of imaging features with respect to a controlled scenario (test–retest), as well as their dependence on acquisition parameters such as slice thickness, or tube current. Only robust and stable features should be used in prognostication/prediction models to improve generalizability across multiple institutions. In this study, we investigated the repeatability and reproducibility of radiomic features with respect to three different scanners, variable slice thickness, tube current, and use of intravenous (IV) contrast medium, combining phantom studies and human subjects with non-small cell lung cancer. In all, half of the radiomic features showed good repeatability (ICC > 0.9) independent of scanner model. Within acquisition protocols, changes in slice thickness was associated with poorer reproducibility compared to the use of IV contrast. Broad feature classes exhibit different behaviors, with only few features appearing to be the most stable. 108 features presented both good repeatability and reproducibility in all the experiments, most of them being wavelet and Laplacian of Gaussian features.
Positron emission tomography (PET) has been in use for a few decades but with its fusion with computed tomography (CT) in 2001, the new PET/CT integrated system has become very popular and is now a key influential modality for patient management in oncology. However, along with its growing popularity, a growing concern of radiation safety among the radiation professionals has become evident. We have judiciously developed a PET/CT facility with optimal shielding, along with an efficient workflow to perform high volume procedures and minimize the radiation exposure to the staff and the general public by reducing unnecessary patient proximity to the staff and general public.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.