The Internet of Things (IoT) already connects billions of devices and keeps growing exponentially. These devices are designed to be integrated with industrial machines, home appliances and infrastructures. One such use-case is to build a smart grid management system that relies on demand-response techniques to control the appliances automatically so that the power can be distributed optimally. The mission-critical smart grid communications require secure, reliable, two-way communicable, and latency bounded connections between the management system and the electrical appliances. To realize these, cellular technology is arguably the most feasible solution. 3GPP has already released the Narrowband-Internet of Things (NB-IoT) standards as the low-power dense-area coverage IoT cellular solution. In this paper, we present an NB-IoT system to monitor and control the connected electrical appliances in a smart grid network. The platform is also capable of configuring the network dynamically. We assess the latency performance for our solution using the commercially available Orange network in Belgium. It is observed that NB-IoT enabled devices can be controlled and monitored with a maximum latency less than 8 seconds in the deep-indoor environment and within 2 seconds for the outdoor environment.
Narrowband Internet of Things (NB-IoT) is gaining prominence as a key Low Power Wide Area Network (LPWAN) technology for IoT applications. Since it operates on licensed frequency spectrum it can provide guarantees to applications demanding Quality of Service (QoS). NB-IoT has emerged as a competitive rival for other LPWAN technologies such as LoRa and Sigfox, which work in the unlicensed frequency spectrum and are vulnerable to interference. Therefore, NB-IoT is the trivial fit for industries and other business companies that demand guaranteed services. In this paper the different features of the NB-IoT technology have been studied on the commercial Orange network in Belgium using the ublox SARA-N210 module [1] as the user equipment (UE). We focused on the device and network performance in terms of setup times, signal quality, throughput, latency, and reliability and studied the network dynamicity on signal strength. These observations are then compared with the theoretical defined limits of NB-IoT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.