The incidence and prevalence of pathological fibrosis increase with advancing age, although mechanisms for this association are unclear. We assessed the capacity for repair of lung injury in young (2 months) and aged (18 months) mice. While the severity of fibrosis was not significantly different between these groups, aged mice demonstrated an impaired capacity for fibrosis resolution. Persistent fibrosis in lungs of aged mice is characterized by the accumulation of senescent and apoptosis-resistant myofibroblasts. These cellular phenotypes are sustained by alterations in cellular redox homeostasis resulting from elevated expression of the reactive oxygen species (ROS)-generating enzyme, NADPH oxidase-4 (Nox4), and an impaired capacity to induce the NFE2-related factor 2 (Nrf2) antioxidant response. Lung tissues from human subjects with idiopathic pulmonary fibrosis (IPF), a progressive and fatal lung disease, also demonstrate this Nox4-Nrf2 imbalance. Nox4 mediates senescence and apoptosis resistance in IPF fibroblasts. Genetic and pharmacologic targeting of Nox4 in aged mice with established fibrosis attenuated the senescent, anti-apoptotic myofibroblast phenotype and led to a reversal of persistent fibrosis. These studies support the concept that loss of cellular redox homeostasis promotes pro-fibrotic myofibroblast phenotypes that result in persistent fibrosis associated with aging. Importantly, our studies suggest that restoration of Nox4-Nrf2 redox balance in myofibroblasts may be an effective therapeutic strategy in age-associated fibrotic disorders, potentially to resolve persistent fibrosis or even reverse its progression.
Matrix stiffening and myofibroblast resistance to apoptosis are cardinal features of chronic fibrotic diseases involving diverse organ systems. The interactions between altered tissue biomechanics and cellular signaling that sustain progressive fibrosis are not well defined. In this study, we used ex vivo and in vivo approaches to define a mechanotransduction pathway involving Rho/Rho kinase (Rho/ROCK), actin cytoskeletal remodeling, and a mechanosensitive transcription factor, megakaryoblastic leukemia 1 (MKL1), that coordinately regulate myofibroblast differentiation and survival. Both in an experimental mouse model of lung fibrosis and in human subjects with idiopathic pulmonary fibrosis (IPF), we observed activation of the Rho/ROCK pathway, enhanced actin cytoskeletal polymerization, and MKL1 cytoplasmic-nuclear shuttling. Pharmacologic disruption of this mechanotransduction pathway with the ROCK inhibitor fasudil induced myofibroblast apoptosis through a mechanism involving downregulation of BCL-2 and activation of the intrinsic mitochondrial apoptotic pathway. Treatment with fasudil during the postinflammatory fibrotic phase of lung injury or genetic ablation of Mkl1 protected mice from experimental lung fibrosis. These studies indicate that targeting mechanosensitive signaling in myofibroblasts to trigger the intrinsic apoptosis pathway may be an effective approach for treatment of fibrotic disorders.
An immature intestinal epithelial barrier may predispose infants and children to many intestinal inflammatory diseases, such as infectious enteritis, inflammatory bowel disease, and necrotizing enterocolitis. Understanding the factors that regulate gut barrier maturation may yield insight into strategies to prevent these intestinal diseases. The claudin family of tight junction proteins plays an important role in regulating epithelial paracellular permeability. Previous reports demonstrate that rodent intestinal barrier function matures during the first 3 weeks of life. We show that murine paracellular permeability markedly decreases during postnatal maturation, with the most significant change occurring between 2 and 3 weeks. Here we report for the first time that commensal bacterial colonization induces intestinal barrier function maturation by promoting claudin 3 expression. Neonatal mice raised on antibiotics or lacking the toll-like receptor adaptor protein MyD88 exhibit impaired barrier function and decreased claudin 3 expression. Furthermore, enteral administration of either live or heat-killed preparations of the probiotic Lactobacillus rhamnosus GG accelerates intestinal barrier maturation and induces claudin 3 expression. However, live Lactobacillus rhamnosus GG increases mortality. Taken together, these results support a vital role for intestinal flora in the maturation of intestinal barrier function. Probiotics may prevent intestinal inflammatory diseases by regulating intestinal tight junction protein expression and barrier function. The use of heat-killed probiotics may provide therapeutic benefit while minimizing adverse effects.
BackgroundExtracorporeal membrane oxygenation (ECMO) is a life-saving support system used in neonates and young children with severe cardiorespiratory failure. Although ECMO has reduced mortality in these critically-ill patients, almost all patients treated with ECMO develop a systemic inflammatory response syndrome (SIRS) characterized by a ‘cytokine storm’, leukocyte activation, and multisystem organ dysfunction. We used a neonatal porcine model of ECMO to investigate whether rising plasma concentrations of inflammatory cytokines during ECMO reflect de novo synthesis of these mediators in inflamed tissues, and therefore, can be used to assess the severity of ECMO-related SIRS.MethodsThree-week-old previously-healthy piglets were subjected to venoarterial ECMO for up to 8 hours. SIRS was assessed by histopathological analysis, measurement of neutrophil activation (flow cytometry), plasma cytokine concentrations (enzyme immunoassays), and tissue expression of inflammatory genes (polymerase chain reaction/western blots). Mast cell degranulation was investigated by measurement of plasma tryptase activity.ResultsPorcine neonatal ECMO was associated with systemic inflammatory changes similar to those seen in human neonates. TNF-α and interleukin-8 (IL-8) concentrations rose rapidly during the first 2 hours of ECMO, faster than the tissue expression of these cytokines. ECMO was associated with increased plasma mast cell tryptase activity, indicating that increased plasma concentrations of inflammatory cytokines during ECMO may result from mast cell degranulation and associated release of preformed cytokines stored in mast cells.ConclusionsTNF-α and IL-8 concentrations rose faster in plasma than in the peripheral tissues during ECMO, indicating that rising plasma levels of these cytokines immediately following the initiation of ECMO may not reflect increasing tissue synthesis of these cytokines. Mobilization of preformed cellular stores of inflammatory cytokines such as in mucosal mast cells may play an important pathophysiological role in ECMO-related SIRS.
Idiopathic pulmonary fibrosis (IPF) is a disease with relentless course and limited therapeutic options. Nintedanib (BIBF-1120) is a multiple tyrosine kinase inhibitor recently approved by the U.S. Food and Drug Administration for the treatment of IPF. The precise antifibrotic mechanism(s) of action of nintedanib, however, is not known. Therefore, we studied the effects of nintedanib on fibroblasts isolated from the lungs of patients with IPF. Protein and gene expression of profibrotic markers were assessed by Western immunoblotting and real-time PCR. Autophagy markers and signaling events were monitored by biochemical assays, Western immunoblotting, microscopy, and immunofluorescence staining. Silencing of autophagy effector proteins was achieved with small interfering RNAs. Nintedanib down-regulated protein and mRNA expression of extracellular matrix (ECM) proteins, fibronectin, and collagen 1a1 while inhibiting transforming growth factor (TGF)-b1-induced myofibroblast differentiation. Nintedanib also induced beclin-1-dependent, ATG7-independent autophagy. Nintedanib's ECM-suppressive actions were not mediated by canonical autophagy. Nintedanib inhibited early events in TGF-b signaling, specifically tyrosine phosphorylation of the type II TGF-b receptor, activation of SMAD3, and p38 mitogen-activated protein kinase. Nintedanib down-regulates ECM production and induces noncanonical autophagy in IPF fibroblasts while inhibiting TGF-b signaling. These mechanisms appear to be uncoupled and function independently to mediate its putative antifibrotic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.