Fused deposition modeling is an additive manufacturing process in which successive layers of material are deposited to create a three-dimensional object. It is the most widely used additive manufacturing process because of its ability to make specimen having difficult geometrical shape. However, building end-user functional parts using fused deposition modeling proved to be a challenging task because of a wide variety of processing parameters. In the present paper, a detailed experimental study on open source 3D printer is reported to explore the effect of various fused deposition modeling process parameters viz. part orientation, infill density and infill pattern on tensile properties and modes of failure. Poly-lactic acid filament is used to make 3D specimens. The experimental values of tensile properties are measured and critically analysed. Failure modes under various tests are studied using scanning electron microscopy. Tensile test results indicate that part orientation, infill pattern and infill density significantly affect the tensile strength. It has been observed that parts printed with flat part orientation and concentric pattern exhibit maximum tensile strength. While tensile strength has been increasing with increment in infill density. From the SEM images, it has been found that one of the major causes of failure is weak strength within and between layers for the lower value of infill density.
Purpose
Fused deposition modeling (FDM) is being increasingly used in automotive and aerospace industries because of its ability to produce specimens having difficult geometrical shape. However, owing to lack of critical information regarding the reliability and mechanical properties of FDM-printed parts at various designs, the use of 3D printed parts in these industries is limited. Therefore, the purpose of this paper is to investigate the impact of process parameters of FDM on the tensile strength of open-hole specimen printed using in-house-fabricated polylactic acid (PLA).
Design/methodology/approach
In the present study, three process parameters, namely, raster angle, layer thickness and raster width, are selected for investigation of tensile strength. To produce the tensile specimens in the FDM machine, the PLA filament is used which is fabricated from PLA granules using a single-screw extruder. Further, the experimental values are measured and critically analysed. Failure modes under tests are studied using scanning electron microscopy (SEM).
Findings
Results indicate that the raster angle has a significant effect on the tensile strength of open-hole tensile specimen. Specimens built with 0° raster angle, 200-µm layer thickness and 500-µm raster width obtained maximum tensile strength.
Originality/value
In this work, a new concept of testing a plate that has a rectangular shape and a circular hole at the centre is tested. Open-hole tensile test standard ASTM D5766 has been implemented for the first time for the FDM process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.