Ti t l e Joul e h e a ti n g a n d b u oy a n cy eff e c t s in el e c t r o-o s m o tic p e ri s t al tic t r a n s p o r t of a q u e o u s n a n ofl ui d s t h r o u g h a m i c r o c h a n n el wi t h c o m pl ex w a v e p r o p a g a tio n A u t h o r s B e g, OA, Tri p a t hi, D a n d S h a r m a , A
The present article studies theoretically the electrokinetic pumping of nanofluids with heat and mass transfer in a micro-channel under peristaltic waves, a topic of some interest in medical nano-scale electro-osmotic devices. The microchannel walls are deformable and transmit periodic waves. The Chakraborty-Roy nanofluid electrokinetic formulation is adopted in which Joule heating effects are incorporated. Soret and Dufour cross-diffusion effects are also considered. Under low Reynolds number (negligible inertial effects), long wavelength and Debye linearization approximations, the governing partial differential equations for mass, momentum, energy and solute concentration conservation are derived with appropriate boundary conditions at the micro-channel walls. The merging model features a number of important thermo-physical, electrical and nanoscale parameter, namely thermal and solutal Grashof numbers, the HelmholtzSmoluchowski velocity (maximum electro-osmotic velocity) and Joule heating to surface heat flux ratio. Closed-form solutions are derived for the solute concentration, temperature, axial velocity, averaged volumetric flow rate, pressure difference across one wavelength, and stream function distribution in the wave frame. Additionally expressions are presented for the surface shear stress function at the wall (skin friction coefficient), wall heat transfer rate (Nusselt number) and wall solute mass transfer rate (Sherwood number). The influence of selected parameters on these flow variables is studied with the aid of graphs. Bolus formation is also visualized and analyzed in detail.
Diabetic neuropathies are a family of nerve disorders caused by diabetes. Symptoms of the disease include nerve palsy, mononeuropathy, mononeuropathy multiplex, diabetic amyotrophy, painful polyneuropathy, autonomic neuropathy, and thoracoabdominal neuropathy. In this study, type 2 diabetes in rats was induced with nicotinamide-streptozotocin. Drug treatment was initiated on the d 15, with the combination regimen of metformin, pioglitazone and glimipiride or metformin and sitagliptin or sitagliptin, amitriptyline and sitagliptin and led to significantly improved glycemic control, increased grip strength and paw jumping response on d 21, 28 and 35 (P < 0.001). Significant increases in blood protein levels and decreases in urinary protein levels were observed in the animals treated with the different regimens on d 21, 28 and 35 (P < 0.001). Combined treatment of streptozotocin and nicotinamide caused marked degeneration of nerve cells, while administration of metformin and sitagliptin showed tissue regeneration and no body weight gain. In conclusion, treatment with sitagliptin and sitagliptin combined with metformin or amitriptyline results in no body weight gain, but causes an increase in grip strength and pain sensitivity, exhibits neural protection, and reverses the alteration of biochemical parameters in rats with streptozotocin-nicotinamide induced type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.