In this paper, sloshing phenomenon in a rectangular tank under a sway excitation is studied numerically and experimentally. Although considerable advances have occurred in the development of numerical and experimental techniques for studying liquid sloshing, discrepancies exist between these techniques, particularly in predicting time history of impact pressure. The aim of this paper is to study the sloshing phenomenon experimentally and numerically using the Smoothed Particle Hydrodynamics method. The algorithm is enhanced for accurately calculating impact load in sloshing flow. Experiments were conducted on a 1 : 30 scaled two-dimensional tank, undergoing translational motion along its longitudinal axis. Two different sloshing flows corresponding to the ratio of exciting frequency to natural frequency were studied. The numerical and experimental results are compared for both global and local parameters and show very good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.