Magic angle spinning nuclear magnetic resonance spectroscopy experiments are widely employed in the characterization of solid media. The approach is incredibly versatile but deleteriously suffers from low sensitivity, which may be alleviated by adopting dynamic nuclear polarization methods, resulting in large signal enhancements. Paramagnetic metal ions such as Gd 3+ have recently shown promising results as polarizing agents for 1 H, 13 C, and 15 N nuclear spins. We demonstrate that the widely available and inexpensive chemical agent Gd(NO 3 ) 3 achieves significant signal enhancements for the 13 C and 15 N nuclear sites of [2- 13 C, 15 N]glycine at 9.4 T and ∼105 K. Analysis of the signal enhancement profiles at two magnetic fields, in conjunction with electron paramagnetic resonance data, reveals the solid effect to be the dominant signal enhancement mechanism. The signal amplification obtained paves the way for efficient dynamic nuclear polarization without the need for challenging synthesis of Gd 3+ polarizing agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.